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The application of microphone arrays for aeroacoustic measurements in wind tunnels
with an open test section requires to consider the sound refraction at the shear layer.
Several methods are available for this that are either applicable to special scenarios such
as planar or cylindrical thin shear layers or that require considerable computational effort.
The paper concerns a new method for general application – ray casting – that is based on a
ray tracing method. Ray tracing is briefly revisited and it is shown that the computational
effort becomes quite high especially for large mapping grids. The ray casting approach with
its interpolation technique is introduced. A time reversal technique is the key to make this
approach very efficient and fast. Finally, the approach is demonstrated using two example
results from both simulation and practical measurement.

I. Introduction

A number of different methods are available for the application of microphone arrays to the characteriza-
tion of aeroacoustic sources. Regardless of their specific approach all these methods require a model for the
sound propagation from the sound sources to the individual microphones of the array. The quality of this
propagation model finally determines also the quality of the measurement results. In a case with no flow
present and a homogeneous medium bearing the sound, this model is simply based on the free field Green’s
function.

However, many practical applications require a more sophisticated approach. One example would be an
open jet wind tunnel where the microphones are mounted outside of the flow while the sources are located
within the jet. In this case, the sound must propagate through the shear layer separating the jet from the
quiescent surrounding in order to arrive at the microphones. On its way the sound is refracted at the shear
layer. In addition, the sound is convected in the flow. Thus, the travel times from source to microphone are
affected. Compared to the case of no flow, these times may be shorter or longer. Moreover, the amplitude
of sound arriving at the microphone is also altered.

A propagation model for microphone array measurements must therefore consider these effects. Generally,
there are three options to account for the refraction at a shear layer in the model. They are quite different
with respect to how they treat the shear layer flow field and the propagation of sound.

The first possibility is to model the shear layer as an infinitely thin vortex sheet separating two regions
of homogeneous flow with different flow speeds (one can be equal to zero). The method of Amiet [1] and
some later improvements [2] handle the refraction at such shear layer of simple geometry like a plane or a
cylindrical surface. While being computationally inexpensive, these methods cannot handle thicker shear
layers. Moreover, the handling of arbitrary jet geometries is difficult.

A second option is to solve some form of wave equation or general model for sound propagation in flows.
For arbitrary flows, this can be done using numerical approaches to the computation of the sound field such
as the Finite Element Method (FEM) [3] or by the application of a suitable Computational Aeroacoustics
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Figure 1. typical application: two-dimensional (blue) or three-dimensional grid (green) for the mapping of
sources at an airfoil in an open jet wind tunnel using a microphone array (red), grids thinned for clarity by
factor 4

(CAA) method [4–6] that computes sound propagation. These methods yield results of high accuracy.
However, instead of only the required information regarding the propagation from source to microphones,
the whole sound field is computed at the expense of relatively high computational cost.

The third approach relies on the tracing of sound ’rays’ through the flow field. A variety of ray tracing
approaches (e.g. [7–10]) suitable for inhomogeneous flows are available in the context of geometrical acoustics.
They require to integrate a system of differential equations in order to trace a ray through a possibly
inhomogeneous medium with arbitrary flow. Without the need to compute the whole sound field, these
methods need considerably less computational resources than FEM or CAA methods. They offer better
accuracy, but are computationally more expensive than vortex sheet methods.

In a typical application of a microphone array in an aeroacoustic wind tunnel the sound sources are
mapped onto a grid of possible sound sources. Thus, it is necessary to estimate sound propagation from M
locations of possible sound sources in the grid to N locations of microphones. This means that altogether
N · M individual travel times have to be computed. In Fig. 1 an example [11] is shown that concerns
the analysis of airfoil noise. Two options for the mapping grid are considered. The first option is a two-
dimensional grid as it is traditionally used. It contains M = 3721 possible source locations. The second
option is a three-dimensional grid which is desirable in some cases with M = 226,981. The number of
microphones in the example is 56, so that 2 · 105 (2D) and 1.3 · 107 (3D) travel times have to be computed.

These high numbers require an efficient computational method, otherwise the computation would last
for an unacceptably long time. For the first option, thin vortex sheet methods, it can be assumed that the
computation is sufficiently fast. The second option would require considerable computational effort because
the FEM or CAA model has to be solved at least several thousand times. This probably renders its use
impracticable. The third option, ray tracing, is more accurate than the first, but possibly faster than the
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second.
Thus, the present contribution focuses on ray tracing to compute sound propagation in the context of

microphone array application to aeroacoustic source characterization. First, the theory of ray propagation
is shortly reviewed and the numerical procedure of tracing a single ray is discussed. Then, an interpolation
method is introduced that renders the simultaneous computation of sound propagation to many microphone
positions much more efficient. Afterwards, it is discussed how a simple time reversal strategy minimizes the
necessary computational effort. Finally, some implementation details are explained and example results are
given.

II. Ray tracing

During the propagation in a quiescent homogeneous medium, the sound does not change its direction of
propagation. If the sound originates from a point source, then the sound that was generated at a certain
time will later pass through a spherical surface where every point on that surface receives the sound at the
same instant t. Thus, the surface is called a wavefront.

If there is an inhomogeneous flow field with a velocity v(x, t) that depends on the location x and a
possibly variable speed of sound c(x), the wavefront is no longer a spherical surface, but has an arbitrary
form, implicitly given by τ(x) = t. For a different instant t there is a different wavefront. This can be
understood as a movement of the wavefront. If xp is a point on the wavefront, then it moves along with the
wavefront at the speed given by [10]

dxp

dt
= v(xp, t) + n(xp, t)c(xp), (1)

where n(xp, t) is the unit normal vector describing the wavefront. The trajectory of the movement of xp can
be seen as a ray of sound. In order to find out about the propagation of sound, this ray has to be traced.

For the ray tracing using (1) the wavefront normal need to be known. Alternatively, the “wave slowness”
s = ∇τ can used, which is a vector that is also normal to the wavefront, but with a magnitude which is the
inverse of the speed the wavefront itself is moving. It is given by:

s(x, t) =
n(x, t)

c+ v(x, t) · n(x, t)
. (2)

If n is now replaced by s
|s| , then s is still needed to do the ray tracing. From the temporal change of the

wave slowness along the ray
ds(xp)

dt
=

(
∂xp

∂t
· ∇
)
s(xp) (3)

and (2) an additional differential equation for the wave slowness can be constructed that complements the
first differential equation (1).

Both differential equations can be written as a system of ordinary differential equations (ODE) in cartesian
co-ordinates (i = 1, 2, 3):

dxi(t)

dt
=

csi(t)

|s(x, t)|
+ vi(x, t), (4)

dsi(x(t), t)

dt
= |s(x, t)| ∂c

∂xi
+

3∑
j=1

sj(x, t)
∂vj(x, t)

∂xi
(5)

where x(t) is now the ray trajectory. For the shear layer refraction problem at hand we may assume that
the velocity field is not time-dependent and it is sufficient to look only at the space-dependent mean velocity
v(x). Moreover, in many practical cases temperature effects on the speed of sound are negligible so that c
can be assumed to be a constant.
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Given a start location x(t0) and a wave front normal n(t0), the system (4) and (5) can be integrated to
trace the ray. This will also produce the travel time from x(t0) to any location along the ray. However, it is
not possible to know a priori which locations the ray will pass trough. Consequently, in order to calculate the
travel time tR for a ray between a source at x(t0) and a microphone at x(tR), first the ray passing through
the microphone position need to be found. This is no longer an initial value problem, but a boundary value
problem which needs to be solved using a shooting method. Within an iterative algorithm, the ODE system
is then repeatedly integrated with different starting conditions until the solution ray hits the microphone.

One possible implementation of this approach using an implicit Adams method for ODE integration and
a derivative-free Nelder-Mead method to minimize the distance between ray and the microphone needs about
200 rays to hit the target. This results in a computation time of about 0.5–1 s per source - microphone
pair which is acceptable if only a few of such computations are to be made. In the typical application case,
this means several days for the two-dimensional grid and as much as 4 months for the three-dimensional
grid. Even when using a faster implementation, the computation times are unacceptably long for practical
applications.

III. Ray casting and spatial interpolation

While the tracing of a single ray may be adequate in the general case, the application to microphone
array measurements allows some special assumptions that can enable a more efficient approach to compute
all the required travel times between each source - microphone pair. A first assumption that can be made is
that the microphones are not located directly upstream a source. Thus, the rays that are emitted from one
source and finally hit one of the microphones are not subject to a total reflection at the shear layer and thus
– more important – do not intersect with other rays from the same source.

The second assumption concerns the differences between travel times for different microphones but the
same source. If the microphones are close to each other, then the travel times are not very different. Thus,
if the travel time from one source is treated as a function of the microphone location, this function is
relatively smooth. A smooth function is a good candidate for interpolation. Values of such a function can
be interpolated from individual function values.

In case of the travel time tR(x), for a spatial interpolation it is sufficient to know the values at the
nodes of a three-dimensional mesh. This mesh can be produced by a bunch of rays originating from the
same source, but starting in different evenly distributed directions (ray casting). Each of these rays has to
be traced by integrating the ODE system (4),(5). Temporal sampling along these rays gives locations and
assigned travel times. Thus, these samples can be treated as the nodes of the mesh. From these nodes, a
tetrahedal mesh can be constructed using Delaunay triangulation. Within each tetrahedal mesh cell, tR(x)
can be interpolated from the four nodal values using linear barycentric interpolation.

This straightforward approach allows to quickly compute the travel time to any location within the
mesh, while this is not possible for locations outside the mesh. In order to compute the travel times for
the microphones in the array, all microphone locations have to be inside the mesh region. To ensure this,
the start directions of the rays casted must cover a sufficient solid angle and the tracing of each ray must
continue long enough to cover the required distance between the source and all microphones.

This ray casting approach can be implemented using the same ODE integration method as for the single
ray. If about 200 rays are cast, then the computation time for each source is somewhat above one second.
The number of microphones has nearly no influence on that computation time. For the typical example given
in the introduction, the overall computation time for M repetitions of this approach is reduced to about 1
hour for the two-dimensional grid and 2 days for the three-dimensional grid. This corresponds to a 50-fold
reduction compared to the shooting method approach.

While these computation times can be handled in a practical application, a further reduction is possible
based on the fact that the number of microphones is usually smaller than the number of source mapping grid
points. Instead of tracing the ray from source to microphone, it is also possible to trace the ray backwards
from microphone to source using the concept of time reversal. The approach is exactly the same as for the
source-to-microphone ray casting except that the velocity field must be reversed in time. This can easily be
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Figure 2. Three monopole sources in an open round jet with a microphone array outside of the jet

done by using −v(x) instead of v(x) and negative Jacobian of v instead of the Jacobian in the ODE system.
Consequently, only N repetitions of the ray casting are required – regardless of the grid dimensionality.
Thus, the overall computation time is drastically reduced to about 100 s for both the two-dimensional and
the three-dimensional case. This is definitely adequate.

IV. Results

A. Simulation: three monopole sources

The approach is first demonstrated here for the synthetic case of three monopole sources. In this scenario,
three sources of same source strength are located within a round jet and emit incoherent white noise signals.
A microphone array with 64 microphones arranged in seven logarithmic spiral arms outside of the jet flow
receives the signals (Fig. 2). At the nozzle exit, the jet has a diameter of D0 = 0.5 m and a flow speed of
U0 = 68.8 m/s (M = 0.2). The microphone array has an aperture of 1.5 m and its plane is 0.5 m away from
the jet axis. All three sources are located 0.6 m downstream from the nozzle while the array center is 0.5 m
downstream from the nozzle. With the co-ordinate origin at the center of the array and the z-axis pointing
towards the jet, the sources are located at x = 0.1 m, y = {0, 0.12, 0.24} m and z = 0.5 m. The jet axis is
pointing in the positive x-direction.

Because the shear layer is approximately halfway between sources and array, it can be expected that
there is a more distinct effect on the sound travel times than for cases where either the shear layer is closer
to the sources or closer to the array. Moreover, two of the sources are located off the jet axis which leads to
ray paths inclined in different directions.

The jet flow is approximated as an isothermal jet. It is assumed that only the zone of jet flow establishment
is of interest. An approximation for the flow in this zone is given in [12], where a cylindrical co-ordinate
system with co-ordinates x, r and the origin at the nozzle exit-plane center is used. The zone of flow
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Figure 3. Flow field in the jet having cylindrical symmetry, dashed line: shear layer

establishment (0 < x < 6.2D0) is characterized by a cone-shaped jet core with constant velocity

Ux = U0, for r ≤ D0

2

(
1− x

6.2D0

)
(6)

and a shear layer that represents the transition to the quiescent surrounding of the jet. The mean flow
velocity within the shear layer is given by

Ux(x, r) = U0 exp

(
− (r + C2x−D0/2)

2

2 (C2x)
2

)
with C2 = 0.081. (7)

In this model, entrainment velocity components are neglected, i.e. Ur = Uy = Uz = 0. Fig. 3 shows the flow
field within the co-ordinate system of the array and source scene.

The ray-casting approach is implemented as part of the open source microphone array signal processing
library Acoular [13]. For each microphone a bunch of rays pointing to the grid of possible source positions is
generated. The ray density is given by the number N of rays per halfspace solid angle Ω = 2π. The spatial
distribution of the rays is calculated from directions (φ, θ) given by a three-dimensional spiral on a spherical
surface:

h = −1 +
2n

2N − 1
, n = 1, . . . , N (8)

θn = arccos(h), (9)

φ0 = 0, (10)

φi+1 =

(
φi +

3.6

2N(1− h2i+1)

)
mod 2π. (11)

This (φ, θ) directions need to be rotated so that the pole of the half sphere points to the grid center. The
required maximum ray length lmax is assessed, and each ray is integrated using an implicit Adams method [14]
with a maximum step length of 10−4lmax. Along the ray, approximately

√
N positions and travel times are

stored. From this data, the interpolating mesh is constructed using Delaunay triangulation.
As a result from the ray casting approach, Fig. 4 shows the wave fronts from source 0 at (0.1,0.0,0.5) m,

given within the y = 0 plane and in the general direction towards the array. The influence of the shear layer
is particularly apparent where the wave front deviates from a spherical shape. Results assuming a ’thick’
shear layer (6) and (7) in Fig. 4 (a) are compared to results computed with the assumption of a thin shear
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(a) thick shear layer
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(b) thin shear layer

Figure 4. Sound travel times from source 0 (Ö), given in milliseconds, dashed line: shear layer, dotted line:
microphone array plane

layer around a cylindrical jet core in Fig. 4 (b). The differences between both cases are barely noticeable.
They become more apparent, if instead of the wave fronts the difference between the sound travel times
without and with jet flow is plotted. Fig. 5 shows such plots and it becomes clear that there is indeed a
subtle difference. Fig. 6 shows the sound travel time between source 0 and locations in the array plane at
y = 0 and z = 0. Again, the differences between the thick and the thin shear layer assumption appear to be
very small. However, the difference between travel times without and with flow considered are obvious.

One important element of the ray casting approach is the interpolation within the mesh constructed by
the rays. It can be expected that this interpolation introduces an additional error. It can be further expected
that this interpolation error will become smaller if more nodes per volume are present in the mesh. The
density of nodes is controlled by the number of rays per halfspace solid angle. The relative interpolation
error is given by

εr =
∆tt −∆ti

∆tt
(12)

where ∆tt is the true travel time, and ∆ti is the travel time that was interpolated. The true travel time is
difficult to estimate in case of the presence of flow. Thus, Fig. 7 shows the error for the case of a quiescent
medium with no flow. The true travel time can then be computed from the distance and the speed of sound.
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(a) thick shear layer

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
x [m]

0.0

0.1

0.2

0.3

0.4

0.5

z 
[m

]

-0.30

-0.25

-0.20

-0.15

-0.10

-0
.0

5
-0

.0
0

0
.0

5 0.
10 0.

15

0.
20

0.
25

0
.3

0
(b) thin shear layer

Figure 5. Difference ∆t0 − ∆t of sound travel times without flow (∆t0) and with flow (∆t), from source 0 (Ö),
given in milliseconds, dashed line: shear layer, dotted line: microphone array plane
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Figure 6. Sound travel time between source 0 and locations in the array plane at y = 0 and z = 0 for the case
of no flow, jet with thick and with thin shear layer

8

D
ow

nl
oa

de
d 

by
 T

ho
m

as
 G

ey
er

 o
n 

Ju
ne

 2
2,

 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

27
62

 



0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
x [m]

10-5

10-4

10-3

10-2

10-1

ε r

N=100

N=400

N=1600

N=6400

Figure 7. Relative error for the interpolated sound travel times between source 0 and locations in the array
plane at y = 0 and z = 0 for the case of no flow, N is the number of rays per halfspace solid angle 2π

As expected, it can be seen that the ray density given by N has a strong influence on the error. For Figs. 4
to 6, N = 1600 was used. For practical applications, N = 800 has proven to be a good compromise between
required computational time and resulting accuracy.

The microphone time histories for the three monopole case are synthesized based on Gaussian-distributed
random source signals. The signals have a duration of 10 s and are sampled at a rate of 51,200 Hz. The
propagation from the sources to the microphone positions is calculated using ray tracing. The microphone
time histories are then calculated as the sum of all source signals propagated to the respective microphone
position. As a basis for the analysis of this data, a cross spectral matrix is computed. The time histories
are partitioned into 1000 blocks of 1024 samples each and a Hanning window is applied to each block before
an FFT and subsequent power spectrum average with 50% block overlap is performed.

The data for the three monopole case is analyzed using a standard frequency domain beamforming
approach with a steering vector formulation of type IV [15]. Fig. 8 shows source maps for the 10 kHz third
octave band in the x-y-plane parallel to the array. If no flow is considered, the map does not show the
correct source positions. With the assumption of a thick shear layer, correct positions are found for all three
sources. Finally, the assumption of a thin shear layer gives nearly correct source positions with only a slight
shift downstream. It can be argued that even in this synthetic case that is set up for a relatively distinct
shear layer refraction effect, the consequences of a thin shear layer assumption are not very severe.

B. Measurement: airfoil in open jet

The application of the ray casting approach to a practical measurement is demonstrated here for the case
of an airfoil in an open jet aeroacoustic wind tunnel as shown in Fig. 1. The tunnnel has a nozzle diameter
of 0.2 m and an exit velocity of 86.9 m/s (M ≈ 0.25). The microphone array has 56 microphones with an
aperture of 1.3 m and is mounted 0.72 m above the airfoil and the jet center line (similar to the setup in [16]).
The airfoil is a NACA 0012 with 0.2 m chord, a span of approximately 0.4 m and was mounted at zero angle
of attack with the leading edge 0.05 m downstream from the nozzle. The airfoil span is wider than the jet,
so the airfoil protrudes from the shear layer and interacts with it. The inflow turbulence intensity is very
low [17]. Consequently, sound generation is expected to happen mainly at the trailing edge. Additionally,
the interaction of the shear with leading and trailing edge is also a possible sound source.

The microphone signals were sampled at 51,200 Hz and acquired for 40 s. For the estimation of the cross
spectral matrix, the time histories were partitioned into 1000 blocks of 4096 samples each. A Hanning window
was applied to each block and an FFT and subsequent power spectrum average with 50% block overlap were
used. Again, a beamforming approach with a steering vector formulation of type IV was applied.
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(b) computed with thick shear layer
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(c) computed with thin shear layer

Figure 8. Example application: three point sources in a jet, beamforming source maps for the 10 kHz third
octave band (sound pressure level in decibels in the array center) in the plane z = 0.5 m, crosses mark the
correct source positions

Fig. 9 shows sound maps for the 12.5 kHz third octave band. If the shear layer refraction is neglected, all
expected sources are found, but their location is obviously not correct, but shifted downstream by different
distances. Most notably, the trailing edge noise source appears to be shifted in the downstream direction,
away from the true location of the trailing edge. If computed using ray casting (N = 800) and a thick shear
layer assumption, all sources appear at the expected locations. For the thin shear layer nearly the same
result is computed with a downstream shift of the trailing edge source that is barely noticeable. It can be
concluded that the ray casting approach leads to reliable results also when applied to data from a practical
measurement. While the assumption of a thick shear layer seems to have only little advantage in the present
case, the model is more realistic and the ray casting approach can accommodate more general flow regimes
at the same time (e.g. curved shear layers) .
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Figure 9. Example application: NACA 0012 airfoil in a open jet aeroacoustic wind tunnel, flow is from left to
right, beamforming source maps for the 12.5 kHz third octave band (sound pressure level in decibels in the
array center) in the plane z = 0.72 m, blue outline marks the airfoil (chord 0.2 m), dashed lines: shear layers

10

D
ow

nl
oa

de
d 

by
 T

ho
m

as
 G

ey
er

 o
n 

Ju
ne

 2
2,

 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

27
62

 



V. Conclusion

A new method is introduced to handle shear layer refraction in the context of microphone array mea-
surements in open wind tunnel test sections. This method is a ray casting method that bases on ray tracing.
A large number of rays is traced simultaneously and the results are spatially interpolated. Thus, there is no
need for the application of the iterative procedure of a shooting method necessary for ray tracing between
two fixed locations such as source and microphone. While possibly being as accurate as ray tracing, ray
casting is much more efficient. The method can handle general cases with no restriction regarding shape and
thickness of the shear layer. It is demonstrated using one simulation scenario with three monopole sources
within a jet as well as using measurements at a NACA 0012 airfoil in an aeroacoustic wind tunnel.
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