Improving speed with orthogonal beamforming

Ennes Sarradj

Brandenburg University of Technology Cottbus

Berlin Beamforming Conference 2010

Brandenburg University of Technology Cottbus

bitu

Airfoil trailing edge noise

Setup in open jet aeroacoustic wind tunnel

Porous airfoils

- experimental survey using 56ch phased array
- 17+ different airfoils
- U: 25...50 m/s
- ▶ α: -16...24°
- > \approx 3500 measurements
- fast method for absolute level determination needed !

Airfoil trailing edge noise

Porous airfoils: some results

*T. Geyer et.al. Experiments in Fluids, Volume 48(2), 2010, 291 - 308

Phased array beamforming (frequency domain)

 \blacktriangleright uses information from N microphone signals

Iniversity of Technology

- $N \times N$ cross spectral matrix (CSM)
- M sources (wanted+unwanted, N > M)
- \longrightarrow CSM has M non-zero eigenvalues

Eigendecomposition

CSM eigenvalues and eigenvectors

- contain all information about the sources
- M eigenvalues / eigenvectors $\longrightarrow M$ sources
- practical complication: "noise" in the signals
- \longrightarrow CSM has full rank (N > M eigenvalues)
 - two groups:
 - "large" eigenvalues (eigenvectors span signal subspace)
 - "small" eigenvalues (eigenvectors span noise subspace)

Hypothesis

signal subspace eigenvalues map to sources

Example: Airfoil 2 kHz octave band

delay & sum

first four eigenvalues

- conventional delay & sum beamforming
- CSM resynthesised from eigenvalue / eigenvector pairs
- seems to work, but mapping is only approximate
- spatial resolution not improved

Improving resolution

Beamformer as spatial filter

- A source signal passes the filter without attenuation
- B all other signals are attenuated as much as possible

Source location

single source: maximum in map = source location

multiple sources: ??? (maxima do not need to be sources)

eigendecomposition may help !

Brandenburg University of Technology Cottbus

bitu

Orthogonal beamforming

Location and strength from eigendecomposition

Algorithm(simplified)

- for each frequency:
- compute cross spectral matrix (CSM, $N \times N$)
- compute eigendecomposition $(\lambda_i, \mathbf{v}_i)$
- estimate number of sources M
- for each i in (1,...,M):
- compute beamforming map from resynthesised CSM
- store location of map maximum
- store eigenvalue λ_i as source strength
- new map: accumulate all strengths at stored locations

Generic test case

Four loudspeakers

- four "identical" tweeters
- narrow spacing (10 cm)
- 56ch array, aperture (150 cm)
- distance 72 cm
- uncorrelated noise signals:

case I: "identical" amplitude

case II: 0, -6, -12, -18 dB

Case I: identical amplitudes

Maps for 2 kHz and 15 kHz frequency line

- conventional delay & sum (CB)
- DAMAS (5000 iterations)
- orthogonal beamforming (OB) with M=20 and with M = 6 **b-tu**

Case I: identical amplitudes Spectrum

- integration over loudspeaker sectors A, B, C, D
- B, C, D shifted by -10 dB, -20 dB, -30 dB respectively

Brandenburg University of Technology Cottbus

b.tu

Case II: different amplitudes

Maps for 2 kHz and 15 kHz frequency line

- conventional delay & sum (CB)
- DAMAS (5000 iteraions)
- orthogonal beamforming (OB) with M=20 and with M=6 b-tu

Case II: different amplitudes Spectrum

- integration over loudspeaker sectors A, B, C, D
- B, C, D shifted by -10 dB, -20 dB, -30 dB respectively

Brandenburg University of Technology Cottbus

b.tu

Case II: additional noise Spectrum

additional noise in each microphone channel (-3 dB)

Brandenburg University of Technology Cottbus

b-tu

Errors

From test case:

- good performance for high frequencies and different source strengths
- Iow frequencies: imprecise localisation
- same source strengths: errors in source strength estimation

Theory

- mapping assumption (signal subspace eigenvalues sources) is approximate
- theoretical error bounds depend on difference of source strengths (Gershgorin Circle Theorem 1931)
- practical error bounds from Monte Carlo simulation

Errors: Monte Carlo simulation

Error: 90%-percentile

- 4 loudspeakers at random positions
- statistics from 10,000 runs
- small error in many relevant cases

Practical test case

Airfoil trailing edge noise - setup

Practical test case

Airfoil trailing edge noise - results

- medium and high frequencies:
 - good agreement with theory
 - performance comparable to DAMAS/CLEAN-SC
 - better than integration of maps from delay and sum (CB)

Improving **speed** ... ?

Delay and Sum

• vector-matrix-vector multiplication ($\hat{\mathbf{G}} = \mathsf{CSM}$)

$$B(\mathbf{x}_t) = \mathbf{h}^H(\mathbf{x}_t)\hat{\mathbf{G}}\mathbf{h}(\mathbf{x}_t)$$

▶ $4(N^2 + N)$ flop per grid point

Orthogonal beamforming

vector-vector multiplication ($\hat{\mathbf{G}}_i = \lambda_i \mathbf{v}_i \mathbf{v}_i^H$, resynthesised CSM)

$$B_i(\mathbf{x}_t) = \mathbf{h}^H(\mathbf{x}_t)\hat{\mathbf{G}}_i\mathbf{h}(\mathbf{x}_t) = \lambda_i|\mathbf{h}^H(\mathbf{x}_t)\mathbf{v}_i|^2, \qquad i = 1\dots M$$

- (4N+1)M flop per grid point (+ maximum finding)
- can be faster than delay and sum !
- easily parallelisable (one thread per eigenvalue)

Loudspeaker example

- > N = 56 (microphones)
- grid size 41×41=1681
- 2048 frequency bins
- time (incl. steering vector calculation)
 - CB: 190 s
 - OB (M = 6): 119 s
 - OB (M = 20): 185 s

Orthogonal beamforming - conclusions

Orthogonal beamforming

- signal subspace method
- suppresses noise effectively

Determination of absolute levels

- results comparable to deconvolution methods for medium and high frequencies
- works with minor sources (-20 dB)
- theoretical errors bounds established

Speed

- very fast, feasible for huge grids
- parallelisable

Reference

Ennes Sarradj: "A fast signal subspace approach for the determination of absolute levels from phased microphone array measurements", Journal of Sound and Vibration 329 (2010), pp. 1553-1569, DOI: 10.1016/j.jsv.2009.11.009

- full mathematical details
- error bounds
- detailed example results

and now for something completely different ...

3D beamforming

- beamforming maps usually on planar grids (2D)
- reality is 3D ! (at least ;-)
- problem: 3D grids are huge (e.g. 50×50×50=125000 points)

randenburg Iniversity of Technology

- solution: fast method
- problem: planar arrays bad 3D resolution
- solution: deconvolution or similar method

3D beamforming

Four loudspeakers - 4 kHz octave band

delay & sum

orthogonal beamforming

3D beamforming

Airfoil - 4 kHz octave band - orthogonal beamforming

