GeoFlow: 3D numerical simulation of supercritical thermal convective states

B. Futterer, R. Hollerbach*, C. Egbers

Dept. Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus, Germany *Dept. of Applied Mathematics, University of Leeds, UK

15th International Couette Taylor Workshop July 9 -12, 2007 Le Havre, France

supported by: German Aerospace Center e.V. (DLR), grant number 50 WM 0122, European Space Agency (ESA), grant number A099-049, ESA Topical Team, grant number 18950/05/NL/VJ

Outline

2 Basic Equations and Numerical Method

3 Results of 3D Numerical Simulation

- Non-rotating Case
- Rotating Case

★ ∃ ► < ∃ ►</p>

Research on convection in spherical shells, geophysically motivated

- central symmetry of buoyancy force field to simulate gravity fields
- parameter values very high (turbulence)
 e.g. *Ra_{core}* up to 10³⁰
- rich variety of influences
 e.g. Coriolis force due to rotation, centrifugal force due to rapid rotation
 - e.g. differential rotation vs. rigid body rotation
- physical properties of fluids
 e.g. low, moderate or high viscosity
- and the magnetic field?

GeoFlow experiment: spherical Rayleigh-Bénard conv.

- central force field by dielectrophoretic effect
- non-rotating case (Busse, 1982, J. Fluid Mech.)
- rotational effects: transition to stabilizing effects by rapid rotation (Busse, 2002, Phys. Fluids)
- without magnetic effects

GeoFlow - Numerical Simulation

Equations for convection in rotating spherical shells with dielectric force field

$$\nabla \cdot \mathbf{U} = 0$$

$$Pr^{-1} \left[\frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U} \cdot \nabla) \mathbf{U} \right] = -\nabla \rho + \nabla^2 \mathbf{U} + \frac{Ra_{centr} T}{\beta^2 r^5} \hat{\mathbf{e}}_r$$

$$-\sqrt{Ta} \hat{\mathbf{e}}_z \times \mathbf{U} + \widetilde{Ra} T r \sin \theta \hat{\mathbf{e}}_{eq}$$

$$\frac{\partial T}{\partial t} + \mathbf{U} \cdot \nabla T = \nabla^2 T$$

no-slip boundary conditions for velocity **U**, temperature fixed $T(\eta) = 1, T(1) = 0$

Parameters				
geometry physical prop. of fluid	radius ratio Prandtl numbe	er	$\eta = \frac{r_i}{r_o}$ $Pr = \frac{\nu}{\kappa}$	
buoyancy (central force)	central Rayleig	h number	$Ra_{centr} = rac{2\epsilon_0\epsilon_r\gamma}{ ho\kappa} V_{ m rms}^2 \Delta T$	
Coriolis force	Taylor number		$Ta = \left(rac{2\Omega r_o^2}{ u} ight)^2$	L
centrifugal force	additional Ray	leigh number	$\widetilde{\it Ra}=rac{lpha\Delta T}{4}\it TaPr$	20
B. Futterer, R. Hollerbach, C. Egbers GeoFlow - Numerical Simulation				

Spectral method

- decomposition of primary variables into poloidal and toroidal parts
- decomposition of these into Chebyshev polynomials and spherical harmonics
- solving equations for spectral coefficients

$$e(r,\theta,\varphi,t) = \sum_{m=0}^{M} \sum_{\ell=m'}^{L} \sum_{k=1}^{K} e_{k\ell m} T_{k-1}(x) P_{\ell}^{|m|}(\cos\theta) e^{im\phi}$$

- truncation with (K,L,M)=(30,60,20)
- R. Hollerbach: A spectral solution of the magneto-convection equations in spherical geometry, Int. J. Numer. Meth. Fluids, 2000, 32, 773-797

Experimental constraints							
gap width viscosity high voltage temperature grad. rotation rate	$r_{o} - r_{i}[mm]$ $\nu[m/s^{2}]$ $V_{rms}[V]$ $\Delta T[K]$ $n[Hz]$	$\begin{array}{l} 13.5 \\ 5 \cdot 10^{-6} \\ 10 \\ \leq 10 \\ \leq 2 \end{array}$	$ \begin{array}{c} \rightarrow \\ \rightarrow \\ \end{array} \\ \end{array} \\ \begin{array}{c} \rightarrow \\ \end{array} \\ \end{array} \\ \end{array} $	η Pr Ra _{centr} Ta R̃a	$\begin{array}{l} 0.5 \\ 64.64 \\ \leq 1.4 \cdot 10^5 \\ \leq 1.3 \cdot 10^7 \\ \leq 9.37 \cdot 10^6 \end{array}$		
B. Futterer, R. Hollerbach, C. Egbers		GeoFlow - Numerical Simulation			5		

Non-rotating Case Rotating Case

Linear analysis for Ta = 0

- critical Racentral for onset of convection independent on Pr
- larger $\eta \rightarrow$ larger critical mode l

Source: Travnikov, V., Egbers, C., Hollerbach, R.: The GEOFLOW-experiment on ISS. II: Numerical simulation, Adv. Space Res. 32 (2003), pp. 181–189 Travnikov V.: Thermische Konvektion im Kugelspalt unter radialem Kraftfeld, Dissertation, Cuvillier Verlag Göttingen, 2004

Non-rotating Case Rotating Case

 $\eta = 0.5$, Pr = 64.64, Ta = 0, Ra_{centr} increases: temperature field visualized in hemispherical shells, scaled to 100 %

Non-rotating Case Rotating Case

What is the stable state?

More details in following talk:

• K. Bergemann, F. Feudel, L. Tuckerman:

GeoFlow: Symmetry breaking bifurcations in a spherical shell convection

イロト イボト イヨト イヨト

Non-rotating Case Rotating Case

Linear analysis for $Ta \neq 0$

- shape of stability curves nearly independent on Pr
- instability due to Hopf bifurcation
- for large *Ta*: *Ra_{centr}* ~ *Ta*^{2/3} (P. Roberts 1968, Philos. Trans. R. Soc. London)
- drift velocity W changes sign (slows down or fastens rotation)

Source: Travnikov et al. (2003), Travnikov (2004)

э

Non-rotating Case Rotating Case

Stability diagram and flow states

Source: Gellert et al. 2005, J. Phys.: Conf. Ser.

B. Futterer, R. Hollerbach, C. Egbers

GeoFlow - Numerical Simulation

イロト イヨト イヨト イ

2

Non-rotating Case Rotating Case

 $Ra_{centr} = 5 \cdot 10^3$, *Ta* increases: influence of initial conditions temperature field visualized on spherical surface in the gap, scaled to 100 %

B. Futterer, R. Hollerbach, C. Egbers GeoFlow - Numerical Simulation

Summary and Conclusion

- non-rotating case
 - stability analysis gives onset of convection
 - DNS shows transition from steady to irregular flow
 - request for analyses of stable states with path following methods \rightarrow K. Bergemann et al.
 - resolve of transition to chaos
 - timeseries analysis with nonlinear methods
- rotating case
 - stability analysis shows influence of centrifugal forces
 - DNS shows complex pattern drift
 - request for path following methods for steady states
 - hydrodynamic instabilities: transition to chaos

< ロ > < 同 > < 三 > < 三 >