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Geophysical Framework

» Large scale motion in stars
and planets due to:
> Convection (hot core)

> Rotation

» Main characteristics
> Spherical shell
> Central force field
» 1/r?: Earth’s outer
core
» r: Earth’s mantle

» Questions ?

> Motion of Earth’s Plates (Earth’s
mantle)

> Motion of Magnetic pole (Earth’s
outer core)




Modelling & approach

» Viscous, homogeneous
incompressible fluid,

» Central gravity force g(r)u,

» Uniformly heated inner sphere,
Uniformly cooled outer sphere.

» no rotation
. . O(8)-invariant problem
» thin axis neglected

1. Onset of convection of the basic flow (‘pure’ thermal
diffusion)

2. small rate rotation: perturbation of convection flow (forced
symmetry breaking)



O(3)-Equivariant bifurcation theory

» In 80’s many studies devoted to dynamical behavior related
to spherical symmetry (Busse, Chossat, Golubitsky,
Lauterbach...)

» Generically, near the convection onset are expected only
stationary or travelling waves solutions

Gaeta and Rossi, J. Math. Phys, 25(6), 1671-1673, 1984

» For the (¢, ¢ + 1) interaction of the spherical modes, robust
heteroclinic cycles can occur because of symmetry. These
cycles are reminescent of the quasi-periodic magnetic pole
reversal.

Guckenheimer and Holmes, Math. Proc. Camb. Phil. Soc., 103: 189-192, 1988



Robust heteroclinic cycles

» The (1,2) interaction was thoroughly numerically and
theoretically studied for a 1/r? force field.
Friedrich and Haken, Am. Phys. Soc., 34(3): 2100-2120, 1986

Armbruster and Chossat, Physica D, 50: 155-176, 1991

» The (2, 3) interaction was studied for a 1/r? and 1/r° force
field. For this last field, the heteroclinic cycles appear only
near a small critical Prandtl number (not possible with
GEOFLOW.)

Chossat and Guyard, J. Nonlinear Sci., 6:201-238, 1996

Beltrame and Egbers, Prog. in Turbulence, Peinke, Kittel (Eds): 133-136, 2005

— Onset of the (3,4) mode interaction
Comparison betwenn GEOFLOW-experiment and geophysical
framework: 2 different force fields: 1/r? and 1/r°.
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Governing equations for the onset of convection
Boussinesq’s approximation

?)‘; = Pr(—Vp+Av - Ra Our) —v.Vv (1)
% = (MA@ + v, ) —Vv.VO (2)
Vv = 0 )

Homogeneous Boundary condition
for n = —2: linear part

> =r',n=-5-21. is a self-adjoint opera-
> —=r2 — tor
Relevant dimensionless numbers:
» Ra: Rayleigh number (buoyancy force (T, — Ty))
» Pr: Prandtl number (viscosity/thermal diffusivity)
» n = R;/Ry: aspect ratio



Spherical Harmonics decomposition
z = (u,0)) € H, H an Hilbert space.

dz

il F(n, Ra,z)

= DF(O,O) (77’ Ra)z - M(Z7 Z)
O(3)-equivariance
TyF(n,Ra,z) = F(n,Ra, Tyz), g€ SO(3)
0(3) = SO(3) @ Z§
»  H: sum of representation of irreductible representation of degree ¢ spanned by spherical functions
TL(6, ¢) with (—¢ < m < £)
> 2=, S 2n(NTH(0, ¢)

P Z¢ natural Antipodal action: S - TS = (—1)¢T%



Linear Stability: results
» Eigenspace ~ irreductible representation of O(3) of degree

14
» Center Manifold reduction on the Eigenspace (2¢ + 1
dimension)
4.5
» Numerical Method
4 » Pseudo-spectral
206 » QZ method
c @, (eigenvalue)
8 » Dielectrophoretic
@) force |
(=1 T » Stat. bif.
01 02 03 04 05 06 0.7 08 » (increases with n

n=R1/R2

Similar results for all force fields:
(3,4) mode interaction for the aspect ratio. n ~ 0.45



Generic bifurcation

Let ¥ be an isotropy subgroup for the action of O(3) in V¢, then
the invariant space

Fix(X) = {x € V!/x is fixed by ¥}

» Even mode: transcritical bifurcation
> (9tX4 = u2Xg + C44P44(X47 X4) + h.o.t.
» ¢ = 2 one unstable transcritical branch axisymmetric
» ¢ = 4 two unstable transcritical branches: axisymmetric and
cubic
» Odd mode: pitchfork bifurcation
» Odd mode: diX3 = (11X3 + C333P333(X3, X3, X3) + h.o.t.
(Antipodal symmetry)
» ¢ = 3: 3 supercritical branches: axisymmetric, 3-fold
dihedral symmetry, tetrahedral symmetry
Only one branch is stable.



Examples
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Same solution (tetrahedral symmetry)



Self-adjoint degeneracy

C44 ~ 0 (quadratic term of even mode).
Consequences:

» two sided branches

» One branch is stable

» ¢ = 2 the axisymmetric one
» ¢ = 4 the cubic one

=4
A\ a
A J
.‘. AT
stable unstable

» Secondary bifurcations (codimension 2 bifurcation)

C. Geiger, G. Dangelmayr et al. Fields Institute Com. Vol. 5, AMS, 1993

Self-adjoint degneracy for g« # r—2 ?
— coefficient computation vs Pr



Mode interaction

Amplitude equation

OiX3 = C3X3 + C34Pa4(X3,X4) + h.o.t. (6)
OtXq = CaXa + Ca4Pa4(Xa,Xq) + C33P33(X3,X3) + h.0.t. (7)

» self adjoint: — ¢44 = 0 independently of Pr
Chossat and Guyard, J. Nonlinear Sci., 6:201-238, 1996
— pitchfork bifurcation of even mode with two opposite sol.

» GEOFLOW: generically ¢y, # 0



Coefficient Degeneracy

coeff. var. for g* = r coeff. var. for g* = 1/r°

—c44
—c34

Prandtl number Prandtl number

Beltrame and Egbers, Proc. Appl. Math. Mech. 4: 474-475, 2004
GEOFLOW (g = 1/r°):
» Self-adjoint c44 ~ 0 only in the neighborhood of Pr; < 1
» GEOFLOW degeneracy for Pr > 35: ¢33 ~ 0
— "pure" mode 3 sol. can exist without mode 4 (antisym.)
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Simple heteroclinic cycle

Theorem : for nearly self-adjoint (7* ~ gx) the existence of
heteroclinic cycles connecting opposite steady-state of even

mode where
» D: axisymmetric of even modes
» P1: isotropy of O(2)
» P2: dihedral type D,

Chossat and Guyard, J. Nonlinear Sci., 6:201-238, 1996



Self-adjoint: Simple cycle: the (2,3) Mode interaction

Temporal amplitudes variations
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Self-adjoint: Lattice of isotropy types: (3,4) mode
interaction

0(2)Bz; 0®Zz; (1)

4

‘\./' \-/

The (3, 4) interaction is an exception of the self-adjoint theorem.



Amplitude

Scaled time
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"Simple" cycle between oppo-
site cubic solutions involving
the plane Fix(Ds @ Z§) and
(Fix(O™)).
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Chossat and Beltrame, in progress



self-adjoint: Homoclinic cycle

Connections between one
cubic symmetric sol. During
the transition the /2 rotation
Mode 3 ampitude symmetry and planar reflec-
g tion are broken:

H[H“\ o - D - O

© ScaledTime T ° d/m(F/X(Df)) =5
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Mode 4 amplitude
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GEOFLOW: Heteroclinic cycles

—mode 3|

—r Connections between cubic and tetrahe-
ll dral solutions.

1. transition in the 3D space: Fix(D¢)

l | 2. almost of symmetries are broken( re-
1L mains (Z5)) during the back connection.

Amplitude
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GEOFLOW: Homoclinic cycle

Connections of ’'near’ tetrahe-
" dral solutions (D§). Presence of
L a drift: the new axis of the sol.
A is random. In the direct simu-
. J J‘ ﬂ J‘ I J\ I lation this cycle is terminated by
e == the cubic sol.
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Ampiitude




GEOFLOW: Existence domain of heteroclinic cycle

Rayleigh number R

Mode Amplitdes

Domain of existence of het. cycle Time evolution for the direct
simulation

Problem: cubic states are "away" from turning point of
bifurcated branch.



GEOFLOW: Heteroclinic cycle submaximal

Amplitude

Connections between cubic
and the "mixed" tetraheral so-
lution.

1. transition in Fix(D.) 2.
transition in Fix(Z, )?
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Small rate rotation

(89‘; = Pr(—Vp+ Av — Rag*(r)©u, + Tav x e;) — v.VVv(8)
9)

Assumption: rotation rate small enough means the center
manifold is still relevant

— addition of small terms in the linear part of amplitude
equation

oxx = (wi+ jewk + O(2))Xk + ... (10)

We have an negative drift (w < 0) for both cases: self-adjoint
and Geoflow according to numerical results.

Travnikov, Beltrame et al., AIP, 733, 45-57 (2004).



Self-adjoint cycle

Hetroclinic cycles —> Generalized HC connecting Rotating
Waves instead Steady-States.
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Geoflow cycle

» remains only the homo. cycle involving tetrahedral state
» amplitude of burst smaller
» mode 4 amplitude does not vanish
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Concluding Remarks

» r, r~5: degeneracy occurs only near critical Prandtl number
» : degeneracy for all Prandtl number

» self-adjoint degeneracy: complex dynamics involving SS of
even modes

» generically axisymmetric solution
» (8,4) mode interaction: axisymmetric and cubic solution

» GEOFLOW degeneracy: complex dynamics involving the
cubic SS and the tetrahedral SS.
Rotation:
» self-adjoint degeneracy: complex dynamics involving RW
of even modes
» GEOFLOW degeneracy: complex dynamics involving RW
of tetrahedral symmetry
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