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Geophysical Framework

I Large scale motion in stars
and planets due to:

I Convection (hot core)

I Rotation

I Main characteristics
I Spherical shell

I Central force field

I 1/r 2: Earth’s outer
core

I r : Earth’s mantle

I Questions ?
I Motion of Earth’s Plates (Earth’s

mantle)

I Motion of Magnetic pole (Earth’s

outer core)



Modelling & approach

I Viscous, homogeneous
incompressible fluid,

I Central gravity force g(r)ur,
I Uniformly heated inner sphere,

Uniformly cooled outer sphere.

I no rotation
I thin axis neglected

→ O(3)-invariant problem

1. Onset of convection of the basic flow (’pure’ thermal
diffusion)

2. small rate rotation: perturbation of convection flow (forced
symmetry breaking)



O(3)-Equivariant bifurcation theory

I In 80’s many studies devoted to dynamical behavior related
to spherical symmetry (Busse, Chossat, Golubitsky,
Lauterbach...)

I Generically, near the convection onset are expected only
stationary or travelling waves solutions
Gaeta and Rossi, J. Math. Phys, 25(6), 1671-1673, 1984

I For the (`, `+ 1) interaction of the spherical modes, robust
heteroclinic cycles can occur because of symmetry. These
cycles are reminescent of the quasi-periodic magnetic pole
reversal.
Guckenheimer and Holmes, Math. Proc. Camb. Phil. Soc., 103: 189-192, 1988



Robust heteroclinic cycles

I The (1,2) interaction was thoroughly numerically and
theoretically studied for a 1/r2 force field.
Friedrich and Haken, Am. Phys. Soc., 34(3): 2100-2120, 1986

Armbruster and Chossat, Physica D, 50: 155-176, 1991

I The (2,3) interaction was studied for a 1/r2 and 1/r5 force
field. For this last field, the heteroclinic cycles appear only
near a small critical Prandtl number (not possible with
GEOFLOW.)
Chossat and Guyard, J. Nonlinear Sci., 6:201-238, 1996

Beltrame and Egbers, Prog. in Turbulence, Peinke, Kittel (Eds): 133-136, 2005

→ Onset of the (3,4) mode interaction
Comparison betwenn GEOFLOW-experiment and geophysical

framework: 2 different force fields: 1/r2 and 1/r5.
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Governing equations for the onset of convection
Boussinesq’s approximation

∂v
∂t

= Pr (−∇p + ∆v− Rag∗(r)Θur)− v.∇v (1)

∂Θ

∂t
= (∆Θ + vr T ∗(r))− v.∇Θ (2)

∇.v = 0 (3)

Homogeneous Boundary condition

I g∗(r) = rn, n = −5,−2,1.
I T ∗(r) = r−2 →

for n = −2: linear part
is a self-adjoint opera-
tor

Relevant dimensionless numbers:
I Ra: Rayleigh number (buoyancy force (T2 − T1))
I Pr: Prandtl number (viscosity/thermal diffusivity)
I η = Ri/Ro: aspect ratio



Spherical Harmonics decomposition

z = (u,Θ)) ∈ H, H an Hilbert space.

dz
dt

= F (η,Ra, z) (4)

= DF(0,0)(η,Ra)z−M(z, z) (5)

O(3)-equivariance

TgF (η,Ra, z) = F (η,Ra,Tgz), g ∈ SO(3)

O(3) = SO(3)⊕ Z c
2

I H: sum of representation of irreductible representation of degree ` spanned by spherical functions
T `

m(θ, φ) with (−` ≤ m ≤ `)

I z =
P

`

P`
m=−` z`

m(r)T `
m(θ, φ)

I Z c
2 natural Antipodal action: S · T `

m = (−1)`T `
m



Linear Stability: results
I Eigenspace ' irreductible representation of O(3) of degree
`

I Center Manifold reduction on the Eigenspace (2`+ 1
dimension)

I Numerical Method
I Pseudo-spectral
I QZ method

(eigenvalue)
I Dielectrophoretic

force
I Stat. bif.
I ` increases with η

Similar results for all force fields:
(3,4) mode interaction for the aspect ratio η ' 0.45



Generic bifurcation

Let Σ be an isotropy subgroup for the action of O(3) in V `, then
the invariant space

Fix(Σ) = {x ∈ V `/x is fixed by Σ}

I Even mode: transcritical bifurcation
I ∂tx4 = µ2x4 + c44P44(x4,x4) + h.o.t .
I ` = 2 one unstable transcritical branch axisymmetric
I ` = 4 two unstable transcritical branches: axisymmetric and

cubic
I Odd mode: pitchfork bifurcation

I Odd mode: ∂tx3 = µ1x3 + c333P333(x3,x3,x3) + h.o.t .
(Antipodal symmetry)

I ` = 3: 3 supercritical branches: axisymmetric, 3-fold
dihedral symmetry, tetrahedral symmetry
Only one branch is stable.



Examples



Self-adjoint degeneracy
c44 ' 0 (quadratic term of even mode).
Consequences:

I two sided branches
I One branch is stable

I ` = 2 the axisymmetric one
I ` = 4 the cubic one

I Secondary bifurcations (codimension 2 bifurcation)
C. Geiger, G. Dangelmayr et al. Fields Institute Com. Vol. 5, AMS, 1993

Self-adjoint degneracy for g∗ 6= r−2 ?
→ coefficient computation vs Pr



Mode interaction

Amplitude equation

∂tx3 = c3x3 + c34P34(x3,x4) + h.o.t . (6)
∂tx4 = c4x4 + c44P44(x4,x4) + c33P33(x3,x3) + h.o.t . (7)

I self adjoint: → c44 = 0 independently of Pr
Chossat and Guyard, J. Nonlinear Sci., 6:201-238, 1996

→ pitchfork bifurcation of even mode with two opposite sol.
I GEOFLOW: generically cxy 6= 0



Coefficient Degeneracy

coeff. var. for g∗ = r coeff. var. for g∗ = 1/r5

Prandtl number Prandtl number

Beltrame and Egbers, Proc. Appl. Math. Mech. 4: 474-475, 2004

GEOFLOW (g∗ = 1/r5):
I Self-adjoint c44 ' 0 only in the neighborhood of Prc < 1
I GEOFLOW degeneracy for Pr > 35: c33 ' 0
→ "pure" mode 3 sol. can exist without mode 4 (antisym.)
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Simple heteroclinic cycle

Theorem : for nearly self-adjoint (T∗ ' g∗) the existence of
heteroclinic cycles connecting opposite steady-state of even
mode where

I D: axisymmetric of even modes
I P1: isotropy of O(2)
I P2: dihedral type Dn

Chossat and Guyard, J. Nonlinear Sci., 6:201-238, 1996



Self-adjoint: Simple cycle: the (2,3) Mode interaction

I Exsitence: direct application
of last theorem

I P2 = Fix(Dd
6 )



Self-adjoint: Lattice of isotropy types: (3,4) mode
interaction

The (3,4) interaction is an exception of the self-adjoint theorem.



"Simple" cycle between oppo-
site cubic solutions involving
the plane Fix(D4 ⊕ Z c

2 ) and
(Fix(O−)).

→ → →

→ → →
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Fig. 8 – The phase portrait on the portion of invariant sphere bounded by P and P” (see Fig. 5) in
the case µ2 > µβ
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Fig. 9 – Scheme of the heteroclinic cycle when µ2 > µβ
2 .

Once the saddle-sink heteroclinic connection exists, a heteroclinic cycle is set
since β̃+ is symmetric to β+. Moreover this cycle is simple : it involves unstable
manifold of dimension 1 only (in Fix(O−) and in Fix(Dd

4)). This was called a
”type II” heteroclinic cycle by [2].

A The quadratic and cubic equivariant maps

In the tables below we list the coefficients of quadratic and cubic maps in equa-
tions (1) and (2). Conventions are as follows : Number m in the ”Equation” column
indicates the index of the component along the spherical harmonic Y m

# , with " = 3
or 4 depending on the map under consideration. We list only the coefficients for the
components with m = 0, · · · ,+", since the components for negative m are obtained
from the ones with positive m according to the rule Y −m

# = (−1)mY
m
# . The num-

19

Chossat and Beltrame, in progress



self-adjoint: Homoclinic cycle

Connections between one
cubic symmetric sol. During
the transition the π/2 rotation
symmetry and planar reflec-
tion are broken:
O → Dz

2 → O
dim(Fix(Dz

2)) = 5

→ → →



GEOFLOW: Heteroclinic cycles
Connections between cubic and tetrahe-
dral solutions.
1. transition in the 3D space: Fix(Dd

4 )
2. almost of symmetries are broken( re-
mains (Z c

2 )) during the back connection.

→

→ →

→



GEOFLOW: Homoclinic cycle

Connections of ’near’ tetrahe-
dral solutions (Dd

4 ). Presence of
a drift: the new axis of the sol.
is random. In the direct simu-
lation this cycle is terminated by
the cubic sol.

→

→ →



GEOFLOW: Existence domain of heteroclinic cycle

Domain of existence of het. cycle Time evolution for the direct
simulation
Problem: cubic states are "away" from turning point of
bifurcated branch.



GEOFLOW: Heteroclinic cycle submaximal

Connections between cubic
and the "mixed" tetraheral so-
lution.
1. transition in Fix(D2) 2.
transition in Fix(Z−

2 )?

→

→ →
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Small rate rotation

∂v
∂t

= Pr (−∇p + ∆v− Rag∗(r)Θur + Tav× ez)− v.∇v(8)

... (9)

Assumption: rotation rate small enough means the center
manifold is still relevant
→ addition of small terms in the linear part of amplitude
equation

∂txk = (µi + jεωk + O(ε2))xk + ... (10)

We have an negative drift (ω < 0) for both cases: self-adjoint
and Geoflow according to numerical results.
Travnikov, Beltrame et al., AIP, 733, 45-57 (2004).



Self-adjoint cycle

Hetroclinic cycles –> Generalized HC connecting Rotating
Waves instead Steady-States.



Geoflow cycle

I remains only the homo. cycle involving tetrahedral state
I amplitude of burst smaller
I mode 4 amplitude does not vanish



—————-



Concluding Remarks

I r , r−5: degeneracy occurs only near critical Prandtl number
I 1

r2 : degeneracy for all Prandtl number

I self-adjoint degeneracy: complex dynamics involving SS of
even modes

I generically axisymmetric solution
I (3,4) mode interaction: axisymmetric and cubic solution

I GEOFLOW degeneracy: complex dynamics involving the
cubic SS and the tetrahedral SS.

Rotation:
I self-adjoint degeneracy: complex dynamics involving RW

of even modes
I GEOFLOW degeneracy: complex dynamics involving RW

of tetrahedral symmetry
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