GeoFlow DNS: Non-rotational and rotational regimes of spherical gap flows

B. Futterer, C. Egbers

Dept. Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus, Germany

Topical Team Geophysical Flow Simulation Meeting 24-25 January 2008 BTU Cottbus, Germany

supported by: German Aerospace Center e.V. (DLR), grant number 50 WM 0122, European Space Agency (ESA), grant number AO99-049, ESA Topical Team, grant number 18950/05/NL/VJ

Outline

2 Basic Equations and Numerical Method

3 Results of 3D Numerical Simulation for GeoFlow

- Linear Analysis
- 3D Direct Numerical Simulation

イロト イボト イヨト イヨト

State of the Art

Basic Equations and Numerical Method Results of 3D Numerical Simulation for GeoFlow Summary and Outlook

Research on convection in spherical shells, geophysically motivated

- central symmetry of buoyancy force field to simulate gravity fields
- parameter values very high (turbulence)
- rich variety of influences

e.g. Coriolis force due to rotation, centrifugal force due to rapid rotation

e.g. differential rotation vs. rigid body rotation

- physical properties of fluids
 e.g. low, moderate or high viscosity
- and the magnetic field?

GeoFlow experiment: spherical Rayleigh-Bénard conv.

- central force field by dielectrophoretic effect in microgravity environment
- non-rotating case
- rotational effects: transition to stabilizing effects by rapid rotation
- without magnetic effects

Equations for convection in rotating spherical shells with dielectric force field

$$\nabla \cdot \mathbf{U} = 0$$

$$Pr^{-1} \left[\frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U} \cdot \nabla) \mathbf{U} \right] = -\nabla p + \nabla^2 \mathbf{U} + \frac{Ra_{central} T}{\beta^2 r^5} \hat{\mathbf{e}}_r$$

$$-\sqrt{Ta} \hat{\mathbf{e}}_z \times \mathbf{U} + \widetilde{Ra} T r \sin \theta \hat{\mathbf{e}}_{eq}$$

$$\frac{\partial T}{\partial t} + \mathbf{U} \cdot \nabla T = \nabla^2 T$$

no-slip boundary conditions for velocity U, temperature fixed $T(\eta)=1, T(1)=0$

Parameters

geometry physical prop. of fluid	radius ratio Prandtl number	$\eta = \frac{r_i}{r_o}$ $Pr = \frac{\nu}{\kappa}$		
buoyancy (central force)	central Rayleigh number	${\it Ra}_{central} = rac{2\epsilon_0\epsilon_r\gamma}{ ho u \kappa} \; V_{ m rms}^2 \Delta T$		
Coriolis force	Taylor number	$T_{a} = \left(rac{2\Omega r_{o}^{2}}{ u} ight)^{2}$		
centrifugal force	additional Rayleigh number	$\widetilde{Ra} = \frac{\alpha \Delta T}{4} Ta Pr$		
	B. Futterer GeoFlow - Non-re	GeoFlow - Non-rotational and rotational regimes 4/1		

Spectral method

- decomposition of primary variables into poloidal and toroidal parts
- decomposition of these into Chebyshev polynomials and spherical harmonics
- solving equations for spectral coefficients

$$e(r,\theta,\varphi,t) = \sum_{m=0}^{M} \sum_{\ell=m'}^{L} \sum_{k=1}^{K} e_{k\ell m} T_{k-1}(x) P_{\ell}^{|m|}(\cos\theta) e^{im\phi}$$

- truncation with (K,L,M)=(30,60,20) resp. (30,60,60) for non-rotating case
- Hollerbach, R.: A spectral solution of the magneto-convection equations in spherical geometry, Int. J. Numer. Meth. Fluids 32 (2000), 773–797

イロト イヨト イヨト イヨト

Experimental constraints

				GeoFlow	outer	mantle	
gap width	$r_o - r_i[mm]$	13.5	$\rightarrow \eta$	0.5	0.37	0.55	
viscosity	$\nu[m/s^2]$	$5 \cdot 10^{-6}$	$\rightarrow Pr$	64.64	0.1-1.0	∞, viscosity temp. depend. / layered	
high voltage temperature	$V_{rms}[V] \Delta T[K]$	$10 \leq 10$	} Ra	$\leq 1.4\cdot 10^5$	>10 ²⁹	$10^{6} - 10^{8}$	
rotation rate	n[Hz]	≤ 2	\rightarrow Ta	$\leq 1.3\cdot 10^7$	10 ³⁰	<< 1	
Experimental Flow Plan							
• set-up of high voltage field:							

set-up of artificial acceleration due to central force field

non-rotating case:

vary ΔT resp. Ra

rotating case:

set-up ΔT resp. Ra, superimpose n resp. Ta

Linear Analysis 3D Direct Numerical Simulation

Linear analysis for Ta = 0

- critical Racentr for onset of convection independent on Pr
- larger $\eta \rightarrow$ larger critical mode l

Source: Travnikov, V.; Egbers, C.; Hollerbach, R.: The GEOFLOW-experiment on ISS. Part II: Numerical simulation, Adv. Space Res. 32 (2003), 181–189 Travnikov V.: Thermische Konvektion im Kugelspalt unter radialem Kraftfeld, Dissertation, Cuvillier Verlag Göttingen, 2004

Linear Analysis 3D Direct Numerical Simulation

Linear analysis for $Ta \neq 0$

- shape of stability curves nearly independent on Pr
- instability due to Hopf bifurcation
- for large Ta: Ra_{centr} ~ Ta^{2/3} [Roberts, P.H.: On the thermal instability of a rotating-fluid sphere containing heat sources, Philos. Trans. R. Soc. London 263 (1968), 93-117]
- drift velocity W changes sign (slows down or fastens rotation)

Source: Travnikov et al. (2003), Travnikov (2004)

イロト イボト イヨト イヨト

Linear Analysis 3D Direct Numerical Simulation

Stability diagram and flow states

B. Futterer

Linear Analysis 3D Direct Numerical Simulation

Linear Analysis 3D Direct Numerical Simulation

Linear Analysis 3D Direct Numerical Simulation

Stability diagram and flow states

B. Futterer

Linear Analysis 3D Direct Numerical Simulation

 $R_{a_{centr}}$ set, T_a increases: low rotation temperature field visualized on spherical surface in the gap, scaled to 100 %

Linear Analysis 3D Direct Numerical Simulation

 $R_{a_{centr}}$ set, T_a increases: intermediate rotation temperature field visualized on spherical surface in the gap, scaled to 100 %

Summary

- non-rotating case
 - stability analysis gives onset of convection
 - DNS shows transition from steady to irregular flow
 - influence of initial conditions shown
 - analyses of stable states with path following methods
 - \rightarrow Bergemann et al. (2007)
 - timeseries analysis with nonlinear methods
- rotating case
 - stability analysis shows influence of centrifugal forces
 - change of sign for drift velocity
 - DNS shows complex pattern drift with different sign
 - request for path following methods for steady states, especially in low rotation regime
 - further timeseries analysis

イロト イボト イヨト イヨト

Outlook

- use of results for interpretation of interferograms
- discussion and interpretation

э