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Equations

Governing equations

Pr−1
»

∂u
∂t

+ (u · ∇)u
–

= − ∇p + ∇
2u +

Ra T
β2r5

er −
√

Ta ez × u

+ cRa T r sin θ eeq

∇ · u = 0 ,
∂T
∂t

+ u · ∇T = ∇
2T

with no-slip b.c. for u and T (η) = 1, T (1) = 0

Parameters:

η =
R1

R2
= 0.5, Pr =

ν

κ
= 64.64, Ta =

„
2Ω R2

2

ν

«2

, Ra =
2ǫ0ǫrγ

ρνκ
V 2

rms ∆T

(cRa = α∆T
4 Ta Pr is not independent)



Outline Equations Simulations Bifurcation diagram Overview: Steady states Onset of time-dependence Conclusion

Equations

Governing equations

Pr−1
»

∂u
∂t

+ (u · ∇)u
–

= − ∇p + ∇
2u +

Ra T
β2r5

er

∇ · u = 0 ,
∂T
∂t

+ u · ∇T = ∇
2T

with no-slip b.c. for u and T (η) = 1, T (1) = 0

Parameters:

η =
R1

R2
= 0.5, Pr =

ν

κ
= 64.64, Ta =

„
2Ω R2

2

ν

«2

= 0, Ra =
2ǫ0ǫrγ

ρνκ
V 2

rms ∆T

(cRa = α∆T
4 Ta Pr = 0 is not independent)



Outline Equations Simulations Bifurcation diagram Overview: Steady states Onset of time-dependence Conclusion

Numerical methods

Pseudo-spectral time-stepping code using decomposition of the primary
variables into poloidal and toroidal potentials
(R. Hollerbach, 2000)

Steady-state solving via Newtons method used to perform path-following
of stationary branches

quadratic extrapolation in order to trace solutions around turning points

Computation of the leading eigenvalues of the Jacobian matrix via the
Arnoldi method
(C.K. Mamun, L.S. Tuckerman, 1995)
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States after onset of convection at Ra = 2491

axisymmetric state at Ra= 2500 different axisym. state at Ra= 4000

cubic symmetric state at Ra= 3000 m = 5 state at Ra= 9000
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Time evolution of the system at Ra = 2500
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Bifurcation diagram
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Bifurcation diagram (zoom)
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Axisymmetric steady-states at Ra = 4000
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Cubic symmetric steady-states at Ra = 3000
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m = 5 states at Ra = 6000
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Onset of time-dependency found numerically for Ra = 28000

Remnant of a tetrahedral symmetry!
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Hysteresis of chaos at Ra = 19000 (left side)
frozen state is reached for Ra = 18600 (right side)
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Conclusion & Outlook

Conclusion

Stationary solution branches have been computed by means of a
path-following method

Existence of multistability

Sudden onset of chaos for Ra > 28000

Hysteresis behaviour of the chaotic branch resulting in frozen states with
tetrahedral symmetry

Outlook

Further refinement of the stability regions of the steady states

Application of continuation for the rotating case (Ta 6= 0)

Comparison of experimental results and theoretical predictions
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E(t) for tetrahedral state
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Tetrahedral state at Ra = 18600

t=30: t=130:
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