GeoFlow: On the status of experimental preparation of spherical gap flow experiments with central force field on International Space Station (ISS)

Thomas von Larcher, Birgit Futterer and Christoph Egbers

Department of Aerodynamics and Fluid Mechanics Brandenburg University of Technology Cottbus

15th International Couette Taylor Workshop

RTI

funded by: European Space Agency (grant no. AO-99-049

and 18950/05/NL/VJ) and German Aerospace Center (grant no. 50 WM 0122)

von Larcher, Th., Futterer, B. and Egbers, C.

Outline

- 2 Experiment Preparation
 - Experiment Set-up
 - Measurement Techniques
 - Status and Schedule
- Experiment Operation
 - Experiment Flow Plan
 - Data Downlink
 - Data Analysis

Space Shuttle Experiment (1985) and 2nd campaign (1995)

Hart et al. (1986) JFM, 173, and NASA-TP-1999-209-576:

- Rotating Hemispherical Shells
- Radial and Latitudinal Temperature Gradients, i.e. Equator-to-Pole Temperature Differences
- Gravity modelled by Imposing a Central Electric Field (*V_{rms}*)
- Visualisation applying Schlieren Technique
- Experiments Compared with Three-Dimensional Nonlinear Simulations

(日)

Fluid flow analogy ...

... of spherical gap flow model in atmospheric motion and convection in core regions of gasous planets as described in

- Yavorskaya et al. (1984) 'A simulation of central-symmetry convection in microgravity conditions'
- Hart et al. (1986) 'Space-laboratory and numerical simulations of thermal convection in a rotating hemispherical shell with radial gravity'

Discussions of Central Force Fields in Geophysical Analogy...

- ... in Earth's outer core. Essential character of the flow is captured as described in
 - Früh (2005)

'Using magnetic fluids to simulate convection in a central force field in the laboratory'

 Beltrame et al. (2006) 'Simulation of convection in a spherical shell under central force field'

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

3

Experiment Set-up **Measurement Techniques** Status and Schedule

Fluid Cell Assembly

volume

device

compensation

Core of Experiment cooling loop outer glass shells research cavity reflecting inner sphere

peltier

element

Science Reference Model

Free Experiment Parameters

therma

sensors

 $Ta < 1.3 \times 10^7$ Rotation Rate [Hz]≤ **2** Ω [kV] = 10High Voltage Vrms $Ra_{central} \leq$ Temperature Diff. 1.4×10^{5} ΔT [K] < 10

pumps

rotary trav

von Larcher, Th., Futterer, B. and Egbers, C.

Experiment Set-up Measurement Techniques Status and Schedule

Experiment Parameters

Geometric Parameters of Research Cavity

Inner Radius	r _i	[<i>mm</i>]	13.5) $\eta = r_i/r_o = 0.5$
Outer Radius	ro	[<i>mm</i>]	27.0	$\int \beta = (r_i - r_o)/r_i = 1$
Gap Width	$r_i - r_o$	[<i>mm</i>]	13.5	

Physical Properties of Working Fluid (Silicone Oil)

Density Kinematic Viscosity Thermal Diffusivity Thermal Conductivity Cubic Exp. Coeff. Dielectric Constant Thermal Coeff. of ϵ_r

$$\begin{array}{ll} [g/cm^3] & 0.92 \\ [m^2/s] & 5 \times 10^{-6} \\ [m^2/s] & 7.735 \times 10^{-7} \\ [W/(K \times m)] & 0.116 \\ [1/K] & 108 \times 10^{-5} \\ \epsilon_r & 2.7 \\ [1/K] & 1.07 \times 10^{-3} \end{array}$$

 $Pr \approx 64$

von Larcher, Th., Futterer, B. and Egbers, C. GeoFlow: On the status of experimental preparation 6

Experiment Set-up Measurement Techniques Status and Schedule

Measurement Techniques

Tracer Particles ...

not suitable due to High Voltage Field

Applicable Techniques

- Wollaston-Shearing-Interferometry (WSI)
- Schlieren Technique / Shadowgraphy

Principle of WSI

- detects refractive index gradients
- sensitive to density gradients due to temperature differences
- optical path length variations cause interference phenomena

Experiment Set-up Measurement Techniques Status and Schedule

Measurement Techniques

Tracer Particles ...

not suitable due to High Voltage Field

Applicable Techniques

- Wollaston-Shearing-Interferometry (WSI)
- Schlieren Technique / Shadowgraphy

Principle of WSI

- detects refractive index gradients
- sensitive to density gradients due to temperature differences
- optical path length variations cause interference phenomena

Experiment Set-up Measurement Techniques Status and Schedule

WSI set-up at BTU Laboratory

Sketch Κ L_3 PO W US AO Q ST L. L_2 g EM

Science Reference Model

Experiment Set-up Measurement Techniques Status and Schedule

Applying WSI in GeoFlow set-up: Non-Rotational Experiments

WSI Image at $\Delta T \approx 8 K$, $\Omega = 0 Hz$, $V_{rms} \approx 10 kV$

Parameters

• $Ra = 4.31 \times 10^{6}$

•
$$Ra_{central} = 1.14 \times 10^5$$

• *Ta* = 0

Flow pattern

Thermal Blob Convection

Goal of WSI Analysis

Information about temperature field (corresponding to flow field) and its time dependent behaviour

Experiment Set-up Measurement Techniques Status and Schedule

Applying WSI in GeoFlow set-up: Non-Rotational Experiments

WSI Image at $\Delta T \approx 8 K$, $\Omega = 0 Hz$, $V_{rms} \approx 10 kV$

Parameters

• $Ra = 4.31 \times 10^{6}$

•
$$Ra_{central} = 1.14 \times 10^5$$

• *Ta* = 0

Flow pattern

Thermal Blob Convection

Goal of WSI Analysis

Information about temperature field (corresponding to flow field) and its time dependent behaviour

Experiment Set-up Measurement Techniques Status and Schedule

Applying WSI in GeoFlow set-up: Rotational Experiments

von Larcher, Th., Futterer, B. and Egbers, C.

Experiment Set-up Measurement Techniques Status and Schedule

Hardware Environment

Fluid Science Lab

von Larcher, Th., Futterer, B. and Egbers, C.

Photos:

Left:

MARS, Napoli, Italy

Right: Astrium GmbH, Friedrichshafen, Germany

Experiment Set-up Measurement Techniques Status and Schedule

Status of Experiment Hardware Preparation

Columbus Arrival at KSC (May 30th, 2006), Photo: ESA

Launch of COF / GeoFlow EC

Scheduled to December 6th, 2007 with NASA Space Shuttle 'Atlantis'

Experiment Flow Plan Data Downlink Data Analysis

Experiment Flow Plan (Cycle 1)

Analysis of Flow Pattern

by variation of

- Ra only
- Ta and Ra

High Resolution Parameter Scan

Experiment Flow Plan Data Downlink Data Analysis

Shared Communication and Data Downlink

von Larcher, Th., Futterer, B. and Egbers, C.

Experiment Flow Plan Data Downlink Data Analysis

Numerical and Experimental Data Analysis

Experiment Flow Plan Data Downlink Data Analysis

Numerically constructed interferogram

optical path through spherical gap

$$s(T) = \int_{r_i}^{r_o} n(T) \, \mathrm{d}r$$

phase shift between adjacent rays

$$\Delta s = \int_{r_i}^{r_o} n(T) \,\mathrm{d}r - \int_{r_i}^{r_o} n(T + \Delta T) \,\mathrm{d}r$$

• with linear behaviour n(T) = aT + b

$$\frac{\Delta s}{a} = \int_{r_i}^{r_o} T(r,\theta,\phi) \,\mathrm{d}r - \int_{r_i}^{r_o} T(r,\theta+\Delta\theta,\phi) \,\mathrm{d}r$$

• pattern of bride and dark fringes $\Delta s/(\lambda/2) = k_{bride} \pm 2, \pm 4... \text{ and } \Delta s/(\lambda/2) = k_{dark} \pm 1, \pm 3...$

Experiment Flow Plan Data Downlink Data Analysis

Example of Forward Modelling (3D)

Flow Pattern: Natural Convection (Steady State)

Parameters: $Ra = 8.09 \times 10^6$, Ta = 0 ($\Delta T = 15.0 K$, $\Omega = 0 Hz$)

von Larcher, Th., Futterer, B. and Egbers, C.

Experiment Flow Plan Data Downlink Data Analysis

Example of Inverse Modelling

Experimental Interferogram

Flow pattern

Natural Convection (Steady State)

Parameters

 $Ra = 2.26 \times 10^6$, Ta = 0

 $(\Delta T=4.19 K, \Omega=0 Hz, V_{rms}=0)$

(日)

Experiment Flow Plan Data Downlink Data Analysis

Example of Inverse Modelling

Region of Interest

Region of Interest

Experiment Flow Plan Data Downlink Data Analysis

Example of Inverse Modelling

Conclusion and Outlook

Experiment Preparation

- Experiment Hardware ready to go
- Preparative Experiments and Numerics will be finished in autumn 2007

Experiment Operations

- Experiment Flow Plan allows for High Resolution Scan
- Data Downlink and preparative Numerics allow for fast flow pattern analysis

Outlook

2nd flight campaign: LDV measurements envisaged