Sphärische Wollaston-Schlieren-Interferometrie: Raum-Zeit-Analyse der thermischen Konvektion im rotierenden Kugelspalt (GeoFlow-Experiment)

Sandy Koch, Birgit Futterer, Christoph Egbers

Lehrstuhl für Aerodynamik und Strömungslehre Brandenburgische Technische Universität Cottbus

Fachtagung "Lasermethoden in der Strömungsmechanik" 08. - 10. September 2009, Erlangen

Gefördert durch: German Aerospace Center e.V. (DLR), 50 WM 0822, European Space Agency (ESA), grant number AO99-049, ESA Topical Team, grant number 18950/05/NL/VJ

		▲ □ ▶ < ₫	₽ ► < E ► < 3	うくで
Sandy Ł	Koch et al. GeoFlow	N		1

	Einleitung Daten Zusammenfassung und Ausblick	
Dutline		

1 Einleitung

- Motivation
- Experiment
- Messmethode

2 Daten

- 3D Simulation
- Experiment
- Daten-Analyse
- 3 Zusammenfassung und Ausblick
 - Zusammenfassung
 - Ausblick

5900

2

E.

<ロト < 団 > < 巨 > < 巨 >

Motivation Experiment Messmethode

Geophysical Flow Simulation

- Konvektionsexperiment in rotierenden Kugelschalen unter Einfluss eines Zentralkraftfeldes
- Mikrogravitationsexperiment im europäischen COLUMBUS Modul auf der Internationalen Raumstation (ISS)

Partner

- Raumfahrtagenturen: ESA und DLR
- BTU Cottbus mit Experimenteam (C. Egbers, B.Futterer, S. Koch, N. Dahley, A. Stöckert, J. Brückner, L. Jehring, N. Scurtu)
- Topical Team für Datenanalyse (R. Hollerbach, P. Chossat, P. Beltrame, L. Tuckerman, F. Feudel, I. Mutabazi)
- Industrie f
 ür Technische Anlagen (FSL und EC)
- USOCs f
 ür User Support (Madrid, Neapel, Col-CC)

SQ P

Konvektion in Kugelschalen, Strömung im Erdinneren

- Experimentelle Untersuchung von Rayleigh-Bénard Konvektion im konzentrischen Kugelspalt unter Einfluss eines künstlichen radialen Kraftfeldes
- ⇒ Strömung im äußeren flüssigen Erdkern
- Generierung des radialen Kraftfeldes durch Anlegen einer Hochspannung zwischen Außen- und Innenkugel
 - \rightarrow künstliche Gravitationskraft
- Anforderungen: Mikrogravitationsbedingungen wie im Fluid Science Laboratory (FSL) im Columbusmodul auf der ISS
- Parameterbandbreite von Grundsrömung bis zur Turbulenz

Earth's interior

[Source: W.J. Kious & R.I Tilling. This Dynamics Earth, USGS (1996)]

<ロ > < 同 > < 回 > < 回 > < 回 > <

Einleitung	Motivation
Daten	Experiment
Zusammenfassung und Ausblick	Messmethode

- GeoFlow Experimentcontainer, integriert im Fluid Science Labor (FSL) im COLUMBUS Modul auf der ISS
- Start zur ISS: 7. Februar 2008
- Start des Experiments: 8. August 2008
- Rücktransport: März 2009 \rightarrow Refurbishment für GeoFlow II

[Sources: European Space Agency (ESA); National Aeronautics and Space Administration (NASA); EADS Astrium GmbH, Friedrichshafen]

SQ P

5

E

Einleitung	Motivation
Daten	Experiment
Zusammenfassung und Ausblick	Messmethode

Parameter				
		GeoFlow	äusserer Erdkern	Erdmantel
Radienverhältnis	$\eta = \frac{r_i}{r_o}$	0.5	0.35	0.55
Prandtl-Zahl	$Pr = rac{ u}{\kappa}$	64.64	0.1 - 1.0	∞ Temp abhäng. Viskosi- tät/geschichtet
Rayleigh-Zahl centr. Rayl.	$egin{aligned} {\sf Ra} &= rac{lpha \Delta {\sf Tgd}^3}{ u \kappa} \ {\sf Ra}_{centr} &= rac{\gamma \Delta {\sf Tge} d^3}{ u \kappa} \end{aligned}$	0 1.4 · 10 ⁵	> 10 ²⁵	$10^{6}-10^{8}$
Taylor-Zahl	$Ta = \left(rac{2\Omega r_a^2}{ u} ight)^2$	$1.3 \cdot 10^{7}$	$pprox 10^{28}$	<< 1

< ロ > < 団 > < 三 > < 三 > < 三 > < 三 < の < ()

EinleitungMotivationDatenExperimentZusammenfassung und AusblickMessmethode

Wollaston-Schlieren-Interferometrie

- Brechungsindex $n=(\lambda,\rho,p,T)$
- Temperaturunterschied \rightarrow Dichte \rightarrow Brechungsindex
 - Variation des Laserlichts ⇒
 Interferometrie:
 Wollaston-Schlieren-Interferometrie
- arbeitet zusätzlich als
 Schlieren/Schattenverfahren
- Interferometer ist integriert im Optical Diagnostic Module (ODM) im FSL

K: Kamera, L: Linsen, PO: Polfilter, W: Wollastonprisma, Q: Laser, ST: Strahlteiler, US: Umlenkspiegel, AO: Adaptionsoptik, EM: Kugel

Interferogramme

500

7

Experiment Messmethode

Messmethode: Wollaston-Schlieren-Interferometrie

• Triggerung der Bildaufnahme alle 60° ightarrow 6 Positionen ergeben Messbild der gesamten Hemisphäre

Datenvolumen

Bilder	200 GB	(pro RUN $pprox$ 16000 Bilder)
Telemetrie	50 GB	$(\Delta T, \Omega, Ra, Ta, U, \mu g, etc.)$

E. < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < 590

3D Simulation Experiment Daten-Analyse

Numerische und experimentelle Datenanalyse. Untersuchung von experimentellen Daten durch Analyse und Vergleich mit numerischen Daten.

SQ (V

Gleichungen für Konvektion in rotierenden Kugelschalen mit Dielektrischem Kraftfeld

Kontinuitätsgleichung

 $\nabla\cdot \bm{U}=0$

Bewegungsgleichung

$$Pr^{-1}\left[\frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U} \cdot \nabla)\mathbf{U}\right] = -\nabla p + \nabla^2 \mathbf{U} + Ra T \,\hat{\mathbf{e}}_z + Ra_{centr} T \,\hat{\mathbf{e}}_r$$
$$+\sqrt{Ta} \,\hat{\mathbf{e}}_z \times \mathbf{U} + \widetilde{Ra} T \,r \sin\theta \hat{\mathbf{e}}_{eq}$$

Energiegleichung

$$\frac{\partial T}{\partial t} + \mathbf{U} \cdot \nabla T = \nabla^2 T$$

no-slip boundary conditions for velocity **U**, temperature fixed $T(r_o) = 0$, $T(r_i) = 1$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

3D Simulation Experiment Daten-Analyse

Stabilitätsdiagramm von numerischen Simulationen

Sandy Koch et al. GeoFlow

3D Simulation Experiment Daten-Analyse

Stabilitätsdiagramm mit Experimentläufen

3D Simulation Experiment Daten-Analyse

Numerische Simulation zur thermischen Konvektion im ruhenden und rotierenden Kugelspalt.

Candul		CasElow
Sandy i	Noch et al.	Georiow

5900

E

3D Simulation Experiment Daten-Analyse

Stabilitätsdiagramm mit Experimentläufen

Einleitung	3D Simulation
Daten	Experiment
Zusammenfassung und Ausblick	Daten-Analyse

Sandy Koch et al.	GeoFlow	15
-------------------	---------	----

3D Simulation Experiment Daten-Analyse

Temperaturfelder mit Blick auf Polarregion:

Thermische Konvektion im nicht-rotierenden Kugelspalt: Stationäre oktaedrische Strömung für

$${\it Ra}_{centr}=1\cdot 10^4$$
, ${\it Ta}=0$.

Isolinien demonstrieren den Charakter der Konvektionsmuster, dunkle Bereiche zeigen den Aufstieg des warmen Fluids.

5900

Ξ

(二)、(四)、(三)、(三)、

3D Simulation Experiment Daten-Analyse

Temperaturfelder für thermische Konvektion im rotierenden Kugelspalt:

Stationäre Strömung mit Zunahme der Mode bei Erhöhung des Parametersatzes [m = 5 \rightarrow 6 \rightarrow 7 \rightarrow 10 bei (Ra_{centr} , Ta = 0) = (8 \cdot 10³, 1 \cdot 10⁶) \rightarrow (1 \cdot 10⁴, 1 \cdot 10⁶) \rightarrow (2 \cdot 10⁴, 2 \cdot 10⁶) \rightarrow (5 \cdot 10⁴, 4 \cdot 10⁶)] und dazugehörige Interferogramme.

▲□▶▲□▶▲□▶▲□▶ □ のQで

3D Simulation Experiment Daten-Analyse

Columnarzellen: $Ra_{centr} = 5 \cdot 10^4$, $Ta = 4 \cdot 10^6$

radiale Geschw.komp. auf Sphäre, 3D-Ansicht der Kugel

100 50 -0.5 relocity component v > 0 0 0.5 -50 -100 1--0.5 0.5 0 X 1

radiale Geschw.komp. auf Sphäre, Ansicht von äquatorialer Ebene auf den Pol

▲□▶ ▲□▶ ▲□▶ ▲□▶

- prograde Drift ٢
- Wechsel der Säulen in der Polarregion

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Ξ

3D Simulation Experiment Daten-Analyse

Abgleich von Einzelbildern:

Identifikation von Streifenmuster als "Columnarzellen"

	Experiment	Numerik
Ra _{centr}	9 · 10 ⁴	5 · 10 ⁴
Ta	9 · 10 ⁶	4 · 10 ⁶

 \rightarrow gute Übereinstimmung

Einleitung	3D Simulation
Daten	Experiment
Zusammenfassung und Ausblick	Daten-Analyse

Sandy Koch et a	al.	GeoFlow			20

Zusammenfassung

- sphärisches Konvektionsexperiment mit künstlicher radialer Gravitationskraft
- Mikrogravitationsexperiment im COLUMBUS-Modul auf der ISS
- Wollaston-Schlieren-Interferometrie
- erste Ergebnisse bestätigen:
 - nicht-rotierende Fälle
 - Koexistenz von verschiedenen Moden (axisymmetric, octahedral, pentagonal)
 - rotierende Fälle
 - gute Übereinstimmung von Columnarzellen

▲□▶ ▲□▶ ▲三▶ ▲三▶

3

SQ (V

GeoFlow I

- Analyse der Experimentbilder mit Bildverarbeitung, Streifenmusteranalyse, sphärische Oberflächenprojektion, Filmen
 - \rightarrow sollen Dynamiken zeigen, wie sie numerisch vorausgesagt werden

GeoFlow II

- Wiederflug als Mantelkonvektionsexperiment
- Fluid mit stark temperaturabhängiger Viskosität
- geplant für 2010/2011

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

E

SQ (V

Einleitung Daten Zusammenfassung und Ausblick	Zusammenfassung Ausblick
---	-----------------------------

Vielen Dank für Ihre Aufmerksamkeit!

Sandy Koch et al.	GeoFlow	23

< ロ > < 団 > < 三 > < 三 > < 三 > < 三 < つ < つ

Einleitung Daten Zusammenfassung und Ausblick	Zusammenfassung Ausblick
---	-----------------------------

Anhang

Sandy Koch et al.	GeoFlow	24
Sandy Koch et al.	GeoFlow	24

Eigenschaften

- Optisches Messverfahren (ohne Tracer)
- Laserlicht durchleuchtet transparentes Silikonöl \rightarrow Temperaturunterschied \rightarrow Brechzahlunterschied \Rightarrow Interferogramm
- Ein Ausschnitt sichtbar \rightarrow 6 Bilder zu jeweils 60° \rightarrow Zusammenfügen zu einem Bild

<ロト < 同ト < 巨ト < 巨ト -

SQ (?

Eigenschaften

- Optisches Messverfahren (ohne Tracer)
- Laserlicht durchleuchtet transparentes Silikonöl \rightarrow Temperaturunterschied \rightarrow Brechzahlunterschied \Rightarrow Interferogramm
- Ein Ausschnitt sichtbar \rightarrow 6 Bilder zu jeweils $60^{\circ} \rightarrow$ Zusammenfügen zu einem Bild

◆□▶▲□▶▲□▶▲□▶ ▲□▶

Mögliche Diagnoseverfahren im FSL

- Visuelle Untersuchung von Strömungen durch Kameras, wie: High-Speed, High-Resolution, Infrarot, Farbaufnahme
- Hintergrund-, Volumen- und Lichtschnittbeleuchtung mit Weißlicht oder monochromatischem Licht
- PIV, 2D-Geschwindigkeitsmessungen
- Thermografie von Flüssigkeitsoberflächen über extern angebrachte Infrarotkamera
- Interferometrie-Untersuchungen mit verschiedenen opt. Anordnungen:
 - digitales Holografie-Interferometer
 - Wollaston-Shearing-Interferometer ⇒ GeoFlow
 - Schlieren-Interferometer ⇒ GeoFlow
 - Electronic Speckle Pattern Interferometer (ESPI)

mehr Informationen: http://spaceflight.esa.int/users/virtualinstitutes/fsl/index1.html

<ロ > < 同 > < 三 > < 三 > < □ > <

Ξ.

Zusammenfassung Ausblick

Setting up high voltage \rightarrow acceleration due to dielectric force field

$$\mathbf{g}_{\mathbf{e}} = rac{1}{2
ho}\epsilon\epsilon_{r}
abla |\mathbf{E}|^{2}$$
 with $\mathbf{E} = rac{1}{r^{2}}rac{r_{i}r_{o}}{r_{o}-r_{i}}V_{0}\sin(\omega t)\hat{\mathbf{e}}_{r}$

$$g_e = \frac{2\epsilon_0\epsilon_r}{\rho} \left(\frac{r_i r_o}{r_o - r_i}\right)^2 V_{rms}^2 \frac{1}{r^5}$$

 $arepsilon_0$ - dielectric constant, $arepsilon_r$ - relative permittivity, ho - density, V_{rms} - voltage

GeoFlow specific values ...

$$\begin{split} \epsilon_{0} &= 8.854 \cdot 10^{-12} \ \text{As/Vm}, \quad \epsilon_{r} = 2.7, \\ \rho &= 920 \ \text{kg/m}^{3}, \\ d &= r_{o} - r_{i} = 27 \ \text{mm} - 13.5 \ \text{mm} = \ 13.5 \ \text{mm}, \\ V_{\text{rms}} &= 10 \ \text{kV} \\ &\to g_{e}|_{r_{o}} \approx 10^{-1} \text{m/s}^{2} \quad \text{compared to} \quad g \approx 10^{1} \text{m/s}^{2} \end{split}$$

 \rightarrow microgravity conditions required!

Numerically constructed interferogram

• optical path through spherical gap

$$s(T) = \int_{r_i}^{r_o} n(T) \, \mathrm{d}r$$

ophase shift between adjacent rays

$$\Delta s = \int_{r_i}^{r_o} n(T) \,\mathrm{d}r - \int_{r_i}^{r_o} n(T + \Delta T) \,\mathrm{d}r$$

• with linear behaviour n(T) = aT + b

$$\frac{\Delta s}{a} = \int_{r_i}^{r_o} T(r,\theta,\phi) \,\mathrm{d}r - \int_{r_i}^{r_o} T(r,\theta+\Delta\theta,\phi) \,\mathrm{d}r$$

5900

Modelling forward

- temperature field calculated from 3D simulation \rightarrow interferogram
- fringe pattern evaluation for experimental data

・ ロ ・ ・ 自 ・ ・ 言 ・ ・ 日 ・ ・ う ら ぐ ・ ・

Zusammenfassung Ausblick

Interferogramm \rightarrow Temperaturfeld

- experimental interferogram \rightarrow calculation of integrated temperature curve
- comparison with numerical data

・ 「 「 」 ・ 山 「 」 ・ 山 同 ・ 山 同 ・ 山 ト ・

Formula - Integration

$$T(\vartheta_{1},\varphi) = \int_{\vartheta_{0}}^{\vartheta_{1}} \frac{\partial T(\vartheta,\varphi)}{\partial \vartheta} d\vartheta + T_{0}$$

= $\frac{\Delta \vartheta \lambda}{2d \varepsilon_{A/B} (dn/dT)} \int_{\vartheta_{0}}^{\vartheta_{1}} f_{phase}(\vartheta,\varphi) d\vartheta + T_{0}$

Variables

Scaled prism angle:	$\varepsilon_{A/B}$	=	0.44°
Wavelength:	$\dot{\lambda}$	=	$532 imes 10^{-9} m$
Axial angle:	artheta	=	16.7°
Gap:	d	=	$13.5 imes10^{-3}m$
Temperature difference:	riangle T	=	2 <i>K</i>
Variation of refractive index:	(dn/dT)	=	$-3.85 imes 10^{-4} K^{-1}$
Start value:	\tilde{T}_0	=	(0.351 imes riangle T) K

▲□▶▲□▶▲≡▶▲≡▶ ▲□▶