Das GeoFlow-Experiment auf der ISS: Auswertung erster Experimentdaten

Sandy Koch, Norman Dahley, Birgit Futterer, C. Egbers

Lehrstuhl für Aerodynamik und Strömungslehre Brandenburgische Technische Universität Cottbus

Fachtagung "Lasermethoden in der Strömungsmechanik" 09. - 11. September 2008, Karlsruhe

Gefördert durch: German Aerospace Center e.V. (DLR), FKZ 50 WM 0122 und 50 WM 0822, European Space Agency (ESA), grant number AO99-049, ESA Topical Team, grant number 18950/05/NL/VJ

글 🖌 🔺 글 🕨

Einleitung Numerische Simulationen Aushlick

Outline

Einleitung

- Motivation
- GeoFlow Experiment
- Messmethode und Datenanalyse
- Numerische Simulationen 2
 - Thermische Konvektion
 - Ohne Rotation

Experimentdaten

- Datentransfer
- Benutzeroberfläche GeoFlow
- Erste Bilddaten
- Chronologie

Ausblick

∍⊳

Motivation GeoFlow Experiment Messmethode und Datenanalyse

GeoFlow

- experimentelle Untersuchung von Rayleigh-Bénard Konvektion im konzentrischen Kugelspalt unter Einfluss eines radialen Kraftfeldes
- ⇒ Strömung im äußeren flüssigen Erdkern oder rotierende Sterne wie die Sonne (Konvektionszonen)
- Generierung des radialen Kraftfeldes durch Anlegen einer Hochspannung zwischen Außen- und Innenkugel
 - \rightarrow künstliche Gravitationskraft
 - \rightarrow geo- und atrophysikalisch begründet
- Anforderungen: Mikrogravitationsbedingungen wie im Fluid Science Laboratory (FSL) im Columbusmodul auf der ISS → Vergleiche zur Erde

rotierendes Kugelmodel, innere Kugel geheizt mit Zentralkraftfeld

Motivation GeoFlow Experiment Messmethode und Datenanalyse

Columbusmodul und FSL

Experimentcontainer, Quellen: ESA (2005), BTU

Ξ.

▶ ★ 臣 ▶

Motivation GeoFlow Experiment Messmethode und Datenanalyse

mögliche Diagnoseverfahren im FSL

- visuelle Untersuchung von Strömungen durch Kameras, wie: High-Speed, High-Resolution, Infrarot, Farbaufnahme
- Hintergrund-, Volumen- und Lichtschnittbeleuchtung mit Weißlicht oder monochromatischem Licht
- PIV, 2D-Geschwindigkeitsmessungen
- Thermografie von Flüssigkeitsoberflächen über extern angebrachte Infrarotkamera
- Interferometrie-Untersuchungen mit verschiedenen opt. Anordnungen:
 - digitales Holografie-Interferometer
 - Wollaston-Shearing-Interferometer \Rightarrow GeoFlow
 - Schlieren-Interferometer \Rightarrow GeoFlow
 - Elecronic Speckle Pattern Interferometer (ESPI)

mehr Informationen: http://spaceflight.esa.int/users/virtualinstitutes/fsl/index1.html

< ロ > < 同 > < 三 > < 三 >

Motivation GeoFlow Experiment Messmethode und Datenanalyse

Eigenschaften

- rein optisches Messverfahren → keine Tracer, keine übl. Messverfahren wie LDA, PIV,...
- Laserlicht durchleuchtet transparentes Silikonöl
- nur Ausschnitt sichtbar \rightarrow 6 Bilder zu jeweils 60° \rightarrow Zusammenfügen zu einem Bild

Motivation GeoFlow Experiment Messmethode und Datenanalyse

Numerische und experimentelle Datenanalyse. Untersuchung von experimentellen Daten durch Analyse und Vergleich mit_numerischen Daten.

Thermische Konvektion

Ohne Rotation

Überblick über Konvektionszustände in Kugelschalen von $\eta = 0.5$ für Pr = 64.64 in Abhänigkeit von $Ra_{central}$ und Ta

Sandy Koch et al.

э

Thermische Konvektion Ohne Rotation

Ohne Rotation

Sandy Koch et al.

æ

Datentransfer Benutzeroberfläche GeoFlow Erste Bilddaten Chronologie

Sandy Koch et al.

GeoFlow

Datentransfer Benutzeroberfläche GeoFlow Erste Bilddaten Chronologie

GEOFLOW MAIN					
Telesetry data	Fluid Cell Heating Diagram				
Fluid Cell Tegeratare Sensor Tago Tener sphere - mex Din Tago Tener sphere - mex Din Tago Ducer sphere - mex Din Tago Ducer sphere - cell Din Tago Ducer ritud Ding serage Tago Coler Dinac Tago Ducer Speed Tago Ducer Speed Tago Ducer Speed Tago Coler Dinac Tago Ducer Speed Tago Ducer Speed	Top Duter sphere - Gol In 315,495 Top Duter sphere - Gol Dut 515,495 Top Duter sphere - Gol Dut 515,495 Top Inter sphere - Neat In 515,995 Top Inter Sphere - Neat In 515,995				
Science related data - Dinensionless munbers Dynamic numbers Taylor Central Rayleigh Static numbers	Time plots Fluid loops temperature Plot Cell velocity Plot				
Prandt1 64.4 Radius ratio 0.5	High Voltage Plot micro-g sensor Plot				

Datenerhalt: $ISS \rightarrow BTU$

- Erhalt von Experimentdaten \rightarrow ca. 20 s Verzögerung
- $\bullet \ \ \, \text{Erhalt von Bilddaten} \to 1 \ \, \text{d Verzögerung}$

Datentransfer Benutzeroberfläche GeoFlow **Erste Bilddaten** Chronologie

Science RUN #1: $Ra = 4 \cdot 10^3$, $V_{rms} = 10 kV$

Science RUN #4: $Ra = 8.87 \cdot 10^4$, $V_{rms} = 10 kV$

Datentransfer Benutzeroberfläche GeoFlow **Erste Bilddaten** Chronologie

Science RUN #1: $Ra = 4 \cdot 10^3$, $Ta = 1, 34 \cdot 10^5$, $V_{rms} = 10 kV$

Sandy Koch et al.

GeoFlow

Datentransfer Benutzeroberfläche GeoFlow **Erste Bilddaten** Chronologie

Science RUN #4: $Ra = 8.87 \cdot 10^4$, $Ta = 1, 34 \cdot 10^5$, $V_{rms} = 10 kV$

Sandy Koch et al.

GeoFlow

Datentransfer
Benutzeroberfläche GeoFlow
Erste Bilddaten
Chronologie

Chronologie			
07.02.08	Start zur ISS		
28.07.08	Einbau von GeoFlow in FSL		
05.08.08	Technische Überprüfung von GeoFlow		
06.08.08	Check out		
07.08.08	1. Run		
: 11.09.08 11. Run von 36 Runs : 03.11.08 36. Run von 36 Runs			
Rotation:	$\approx 16000 \text{ Bilder mit } 13,5 \text{ GB pro RUN}$		
Low-Rotati	on: $\approx 9000 \text{ Bilder mit } 7,7 \text{ GB pro RUN}$		
Ohne-Rota	tion: $\approx 800 \text{ Bilder mit } 0,7 \text{ GB pro RUN}$		

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Ausblick

- $\bullet~$ Wiederflug $\rightarrow~$ GeoFlow II, ähnliche Experimentprozedur wie GeoFlow I
- Tausch des Fluids mit stark temperaturabhängigem Fluid zur Simulation von Mantel-Konvektionen (Nonanol (C₉H₂₀O) oder Octanol (C₈H₁₈O))
- wissenschaftliche Analysen sind vergleichbar mit denen aus GeoFlow I, aber veränderte Konvektionsverhalten sind zu erwarten

Vielen Dank für Ihre Aufmerksamkeit!

Ξ.

Anhang

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ –

Wollaston-Shearing

- Brechungsindex n=(λ,ρ,p,T)
- Temperaturunterschied \rightarrow Dichte \rightarrow Brechungsindex
 - Variation des Laserlichts ⇒ Interferometrie: Wollaston-Shearing-Interferometrie
 - Ablenkung des Strahls: Schlieren/Schattenverfahren
- zusätzlich arbeitet Wollaston-Shearing-Interferometrie als Schlieren/Schattenverfahren
- Interferometer ist integriert im Optical Diagnostic Module (ODM) im FSL

K: Kamera, L: Linsen, PO: Polfilter, W: Wollastonprisma, Q: Laser, ST: Strahlteiler, US: Umlenkspiegel, AO: Adaptionsoptik, EM: Kugel

Skizze vom Strahlenverlauf

Interferogramme

Sandy Koch et al.

GeoFlow

Einleitung Numerische Simulationen Aushlick

Equations for convection in rotating spherical shells with dielectric force field equation of continuity

$$abla \cdot \mathbf{U} = \mathbf{0}$$

equation of motion

$$Pr^{-1}\left[\frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U} \cdot \nabla)\mathbf{U}\right] = -\nabla p + \nabla^2 \mathbf{U} + Ra T \,\hat{\mathbf{e}}_z + Ra_{centr} T \,\hat{\mathbf{e}}_r$$
$$+\sqrt{Ta} \,\hat{\mathbf{e}}_z \times \mathbf{U} + \widetilde{Ra} T \,r \sin\theta \hat{\mathbf{e}}_{ec}$$

equation of energy

$$\frac{\partial T}{\partial t} + \mathbf{U} \cdot \nabla T = \nabla^2 T$$

no-slip boundary conditions for velocity **U**, temperature fixed $T(r_o) = 0$, $T(r_i) = 1$

3

Setting up high voltage \rightarrow acceleration due to dielectric force field

$$\mathbf{g}_{\mathbf{e}} = \frac{1}{2\rho} \epsilon \epsilon_r \nabla |\mathbf{E}|^2 \quad \text{with} \quad \mathbf{E} = \frac{1}{r^2} \frac{r_i r_o}{r_o - r_i} V_0 \sin(\omega t) \hat{\mathbf{e}}_r$$

$$g_e = \frac{2\epsilon_0\epsilon_r}{\rho} \left(\frac{r_i r_o}{r_o - r_i}\right)^2 V_{rms}^2 \frac{1}{r^5}$$

 $arepsilon_0$ - dielectric constant, $arepsilon_r$ - relative permittivity, ho - density, V_{rms} - voltage

GeoFlow specific values ...

$$\begin{split} \epsilon_0 &= 8.854 \cdot 10^{-12} \text{ }^{As}/v_m, \quad \epsilon_r = 2.7, \\ \rho &= 920 \text{ }^{kg}/\text{m}^3, \\ d &= r_o - r_i = 27 \text{ } mm - 13.5 \text{ } mm = \text{ } 13.5 \text{ } mm, \\ V_{rms} &= 10 \text{ } kV \\ &\rightarrow g_e|_{r_o} \approx 10^{-1} \text{ } m/\text{s}^2 \quad \text{ compared to } \quad g \approx 10^1 \text{ } m/\text{s}^2 \end{split}$$

 \rightarrow microgravity conditions required!

Parameters				
		GeoFlow	Earth outer core	mantle
radius ratio	$\eta = \frac{r_i}{r_o}$	0.5	0.35	0.55
Prandtl number	$Pr = \frac{\nu}{\kappa}$	64.64	0.1 - 1.0	∞ viscosity temp. depend /layered
Rayleigh number centr. Rayl. num.	$Ra = \frac{\alpha \Delta Tgd^3}{\nu \kappa}$ $Ra_{centr} = \frac{\gamma \Delta Tg_e d^3}{\nu \kappa}$	$0 \\ 1.8 \cdot 10^4$	$> 10^{25}$	$10^{6} - 10^{8}$
Taylor number	$Ta = \left(\frac{2\Omega d^2}{\nu}\right)^{2^n}$	$8.4\cdot10^5$	$pprox 10^{28}$	<< 1

◆□▶ ◆御▶ ◆臣▶ ◆臣▶

Numerically constructed interferogram

• optical path through spherical gap

$$s(T) = \int_{r_i}^{r_o} n(T) \,\mathrm{d} r$$

• phase shift between adjacent rays

$$\Delta s = \int_{r_i}^{r_o} n(T) \,\mathrm{d}r - \int_{r_i}^{r_o} n(T + \Delta T) \,\mathrm{d}r$$

• with linear behaviour n(T) = aT + b

$$\frac{\Delta s}{a} = \int_{r_i}^{r_o} T(r,\theta,\phi) \,\mathrm{d}r - \int_{r_i}^{r_o} T(r,\theta+\Delta\theta,\phi) \,\mathrm{d}r$$

æ

イロト イボト イヨト イヨト