ClimeHop

Lecture slides

Conservation measures for the large marsh grasshopper

Measure name	Measure definition	Number of mowing events	Ecological impact	Costs
Very early mowing	Mowing until 7 weeks after the beginning of the vegetation period	1	++	€€
Early mowing	Mowing until 9 weeks after the beginning of the vegetation period	1	+++	€€€
Late mowing	Mowing after 21 weeks after the beginning of the vegetation period	1	++++	€€€€
Very late mowing	Mowing after 23 weeks after the beginning of the vegetation period	1	+++++	€€€€€
Mowing twice	Mowing until 7 and after 23 weeks after the beginning of the vegetation period	2	+	€

Cost-effectiveness

- Imagine a landscape divided into 9 grid cells

Cost-effectiveness

- Imagine a landscape divided into 9 grid cells
- Each grid cell has a specific „ecological value" (EV)

9 EV	8 EV	7 EV
6 EV	5 EV	4 EV
3 EV	2 EV	1 EV

Cost-effectiveness

- Imagine a landscape divided into 9 grid cells
- Each grid cell has a specific „ecological value" (EV)
- Each grid cell also has specific conservation costs

Cost-effectiveness

- Each grid cell has a specific „ecological value" (EV) and conservation costs
- In which order would an ecologist who only considers ecol. value choose conservation sites?

Cost-effectiveness

- Each grid cell has a specific „ecological value" (EV) and conservation costs
- In which order would an ecologist who only considers ecol. value choose conservation sites?
- Start with 9EV, then 8EV, then 7EV etc.

$\begin{gathered} 9 \mathrm{EV} \\ 6,000 € \end{gathered}$	$\begin{gathered} 8 \mathrm{EV} \\ 4,000 € \end{gathered}$	$\begin{gathered} 7 \mathrm{EV} \\ 4,000 € \end{gathered}$
$\begin{gathered} 6 \mathrm{EV} \\ 4,000 € \end{gathered}$	$\begin{gathered} 5 \mathrm{EV} \\ \mathbf{2 , 5 0 0 €} \end{gathered}$	$\begin{gathered} 4 \mathrm{EV} \\ \mathbf{2 , 0 0 0 €} \end{gathered}$
$\begin{gathered} 3 \mathrm{EV} \\ 2,000 € \end{gathered}$	$\begin{gathered} 2 \mathrm{EV} \\ 1,000 € \end{gathered}$	$\begin{gathered} 1 \mathrm{EV} \\ 1,000 € \end{gathered}$

Cost-effectiveness

- Each grid cell has a specific „ecological value" (EV) and conservation costs
- In which order would an ecologist who only considers ecol. value choose conservation sites?
- Start with 9EV, then 8EV, then 7EV etc.
- In which order would an economist who only considers costs choose

$\begin{gathered} 9 \mathrm{EV} \\ 6,000 € \end{gathered}$	$\begin{gathered} 8 \mathrm{EV} \\ 4,000 € \end{gathered}$	$\begin{gathered} 7 \mathrm{EV} \\ \mathbf{4 , 0 0 0 €} \end{gathered}$
$\begin{gathered} 6 \mathrm{EV} \\ 4,000 € \end{gathered}$	$\begin{gathered} 5 \mathrm{EV} \\ \mathbf{2 , 5 0 0 €} \end{gathered}$	$\begin{gathered} 4 \mathrm{EV} \\ 2,000 € \end{gathered}$
$\begin{gathered} 3 \mathrm{EV} \\ \mathbf{2 , 0 0 0 €} \end{gathered}$	$\begin{gathered} 2 \mathrm{EV} \\ 1,000 € \end{gathered}$	$\begin{gathered} 1 \mathrm{EV} \\ \mathbf{1 , 0 0 0 €} \end{gathered}$

Cost-effectiveness

- Each grid cell has a specific „ecological value" (EV) and conservation costs
- In which order would an ecologist who only considers ecol. value choose conservation sites?
- Start with 9EV, then 8EV, then 7EV etc.
- In which order would an economist who only considers costs choose

$\begin{gathered} 9 \mathrm{EV} \\ 6,000 € \end{gathered}$	$\begin{gathered} 8 \mathrm{EV} \\ 4,000 € \end{gathered}$	$\begin{gathered} 7 \mathrm{EV} \\ \mathbf{4 , 0 0 0 €} \end{gathered}$
$\begin{gathered} 6 \mathrm{EV} \\ 4,000 € \end{gathered}$	$\begin{gathered} 5 \mathrm{EV} \\ \mathbf{2 , 5 0 0 €} \end{gathered}$	$\begin{gathered} 4 \mathrm{EV} \\ 2,000 € \end{gathered}$
$\begin{gathered} 3 \mathrm{EV} \\ \mathbf{2 , 0 0 0 €} \end{gathered}$	$\begin{gathered} 2 \mathrm{EV} \\ 1,000 € \end{gathered}$	$\begin{gathered} 1 \mathrm{EV} \\ \mathbf{1 , 0 0 0 €} \end{gathered}$

- Start with cheapest $(1,000 €)$, then $2,000 €$ etc.

Cost-effectiveness

- Each grid cell has a specific „ecological value" (EV) and conservation costs
- Budget constraint: 6,000€
- Which sites would they choose?

$\begin{gathered} 9 \mathrm{EV} \\ 6,000 € \end{gathered}$	$\begin{gathered} 8 \mathrm{EV} \\ 4,000 € \end{gathered}$	$\begin{gathered} 7 \mathrm{EV} \\ 4,000 € \end{gathered}$
$\begin{gathered} 6 \mathrm{EV} \\ 4,000 € \end{gathered}$	$\begin{gathered} 5 \mathrm{EV} \\ 2,500 € \end{gathered}$	$\begin{gathered} 4 \mathrm{EV} \\ 2,000 € \end{gathered}$
$\begin{gathered} 3 \mathrm{EV} \\ 2,000 € \end{gathered}$	$\begin{gathered} 2 \mathrm{EV} \\ 1,000 € \end{gathered}$	$\begin{gathered} 1 \mathrm{EV} \\ \mathbf{1 , 0 0 0 €} \end{gathered}$

Cost-effectiveness

- Each grid cell has a specific „ecological value" (EV) and conservation costs
- Budget constraint: 6,000€
- Which sites would they choose?

$\begin{gathered} 9 \mathrm{EV} \\ 6,000 € \end{gathered}$	$\begin{gathered} 8 \mathrm{EV} \\ 4,000 € \end{gathered}$	$\begin{gathered} 7 \mathrm{EV} \\ 4,000 € \end{gathered}$
$\begin{gathered} 6 \mathrm{EV} \\ 4,000 € \end{gathered}$	$\begin{gathered} 5 \mathrm{EV} \\ \mathbf{2 , 5 0 0 €} \end{gathered}$	$\begin{gathered} 4 \mathrm{EV} \\ 2,000 € \end{gathered}$
$\begin{gathered} 3 \mathrm{EV} \\ 2,000 € \end{gathered}$	$\begin{gathered} 2 \mathrm{EV} \\ 1,000 € \end{gathered}$	$\begin{gathered} 1 \mathrm{EV} \\ 1,000 € \end{gathered}$

Cost-effectiveness

- Each grid cell has a specific „ecological value" (EV) and conservation costs
- Budget constraint: 6,000€
- Which sites would they choose?

Ecologist

Cost-effectiveness

- Each grid cell has a specific „ecological value" (EV) and conservation costs
- Budget constraint: 6,000€
- Which sites would they choose?

Ecologist

Economist

$\begin{gathered} 9 \mathrm{EV} \\ 6,000 € \end{gathered}$	$\begin{gathered} 8 \mathrm{EV} \\ 4,000 € \end{gathered}$	$\begin{gathered} 7 \mathrm{EV} \\ 4,000 € \end{gathered}$
$\begin{gathered} 6 \mathrm{EV} \\ 4,000 € \end{gathered}$	$\begin{gathered} 5 \mathrm{EV} \\ \mathbf{2 , 5 0 0 €} \end{gathered}$	$\begin{gathered} 4 \mathrm{EV} \\ 2,000 € \end{gathered}$
$\begin{gathered} 3 \mathrm{EV} \\ \mathbf{2 , 0 0 0 €} \end{gathered}$	$\begin{gathered} 2 \mathrm{EV} \\ 1,000 € \end{gathered}$	$\begin{gathered} 1 \mathrm{EV} \\ 1,000 € \end{gathered}$

Cost-effectiveness

- Each grid cell has a specific „ecological value" (EV) and conservation costs
- Budget constraint: 6,000€
- Which sites would they choose?

Ecologist

Economist

Conservation outcomes of different measures

Conserving the LMG with the conservation measure "very early mowing" according to the strategies "low cost", "high benefit" and "benefit-cost ratio" leads to the following outcomes:

Conservation outcomes of different measures

Conserving the LMG with the conservation measure "early mowing" according to the strategies "low cost", "high benefit" and "benefit-cost ratio" leads to the following outcomes:

Conservation outcomes of different measures

Conserving the LMG with the conservation measure "late mowing" according to the strategies "low cost", "high benefit" and "benefit-cost ratio" leads to the following outcomes:

Conservation outcomes of different measures

Conserving the LMG with the conservation measure "very late mowing" according to the strategies "low cost", "high benefit" and "benefit-cost ratio" leads to the following outcomes:

Conservation outcomes of different measures

Conserving the LMG with the conservation measure "mowing twice" according to the strategies "low cost", "high benefit" and "benefit-cost ratio" leads to the following outcomes:

Conservation outcomes of different measures

Conserving the LMG with any conservation measure according to the strategies "low cost", "high benefit" and "benefit-cost ratio" leads to the following outcomes:

Effects of climate change - additional results

- The following slides provide additional results not shown in the app

Effects of climate change - additional results

RCP2.6: Choosing individual conservation measures or according to the strategies "low cost", "high benefit" and "benefit-cost ratio" leads to the following outcomes:

Effects of climate change - additional results

RCP4.5: Choosing individual conservation measures or according to the strategies "low cost", "high benefit" and "benefit-cost ratio" leads to the following outcomes:

Effects of climate change - additional results

RCP8.5: Choosing individual conservation measures or according to the strategies "low cost", "high benefit" and "benefit-cost ratio" leads to the following outcomes:

