Air Pollution Control and Air Chemistry: Atmospheric Particulate Matter ^{7th} lecture

Detlev Möller

Chair for Atmospheric Chemistry and Air Pollution Control Faculty of Environmental Sciences and Process Engineering Brandenburg Technical University Cottbus, Germany

What PM is it? = Dust....

is a mixture of solid particles in the size range from 5 nm until 100 μ m with different chemical (and biological) composition, different origin and fate, different structure (crystallography) and different life time. Each particle may be unique, however, one can classify different groups of PM.

Different meanings: particulate matter (PM) suspended particulate matter (SPM) dust

However, it is all the "same": atmospheric aerosol

- \succ Particle size range from few nm up to hundreds of μ m.
- > Very different chemical composition.
- Different forms and shapes.

Size	Ranges	and	termination	of atmos	spheric	e aerosol
~			••••••••••	01 0001110		

radius range	German meaning after Junge	english meaning after	other (german) meanings
(in µm)	(1963)	Whitby und Sverdrup (1973)	
< 0,01	ultrafeine Partikeln	ultrafine mode	Cluster, Embryo
0,01-0,1	Aitkenkerne	nucleation mode	-
0,1-1	große Partikeln	accumulation mode	Feinststaub
>1	Riesenpartikeln	coarse mode	Staub
>5	-	-	Sedimentationsstaub

Why we are interested in PM studies?

- 1. Hygienic aspects (health, pollution)
- 2. Atmospheric physics (climate)
- 3. Atmospheric chemistry (multiphase chemistry)

What will we learn from PM studies?

- 1. Sources (primary species, processes)
- 2. Origin (local, long-range transport)
- 3. Relationships (chemical and physical)
- 4. Time variation (cycles, trends)

Design of abatement strategies

Analysis of PM data

1. Analysis of temporal variation

- cycles (?): diurnal, seasonal
- episodes (pollution events, air masses)
- trends (pollution abatement, climate)
- 2. Size resolution frequencies (if available)
 - origin of species
- 3. Correlation between stations (if existing)
 - homogenity of concentration distribution (transport, transformation)
 - source characteristic: identity or difference

4. Correlation between chemical components (if analysed)

- atmospheric chemical relations (e.g. ammonium sulphate)
- origin (source region): identity or difference
- 5. Correlation with meteorological parameters (if measured)
 - characteristics of transport and (partly) transformation
- 6. Correlation with traffic data (if available)

Origin of PM species

PM species	transfer	primary species	source
	transport	seasalt SO ₄ ²⁻	ocean
SO ₄ ²⁻	gas-phase oxidation ($\tau \approx 1 \text{ d}$) aqueous-phase oxidation (cloud processing)	SO ₂	combustion of fossil fuels
NH4 ⁺	fast gas-to-particle transformation	NH ₃	fertilizing, livestocks, traffic (?), industry
NO ₃ -	multi-step gas-phase oxidation ($\tau \approx$ 1-2 d)	NO	fraffic, combustion, industrial high- temperature processes
Cl-	transport	seasalt Cl-	ocean
	fast gas-to-particle transformation	HCI	coal combustion, incineration
Na+ , Mg ²⁺	transport	seasalt Na⁺	ocean
K ⁺ , Mg ²⁺	transport	K⁺	soil
Ca ²⁺	transport	Ca ²⁺	flue ash, building activities, soils
EC	transport	EC (soot)	incomplete combustion
trace metals	transport	trace metals	different technical sources and processing, volcanoes,
OC	complex chemical transformation	NMHC	traffic, solvent use, biosphere
(organics)	transport and chemical degradation	biogenic OC	biosphere

PM formation processes ("Secondary Aerosol"): The major precursors are shown in green squares. The VOC can be gaseous (always in the gas phase), non-volatile (always in the condensed phase), and semivolatile (partitioned between the gas and condensed phases).

Size Distribution: Junge 1965

Regional Haze: Shenendoah and Yosemite Nat. Park

REGIONAL URBAN HAZE

Charles Darwin: The Voyage of the Beagle (1839) (on "photochemical smog")

During this day I was particularly struck with a remark of Humboldt's, who often alludes to "the thin vapour which, without changing the transparency of the air, renders its tints more harmonious, and softens its effects." This is an appearance which I have never observed in the temperate zones. The atmosphere, seen through a short space of half or three quarters of a mile, was perfectly lucid, but at a greater distance all colours were blended into a most beautiful haze, of a pale French grey, mingled with a little blue. The condition of the atmosphere between the morning and about noon, when the effect was most evident, had undergone little change, excepting in its dryness. In the interval, the difference between the dew point and temperature had increased from 7° to 17° C.

source		Peterson	Pueschel	Jonas et al.
		and Junge	(1995)	(1995)
		(1971)		
primary emission				
sea salt		1000	300-2000	1300
soil dust		500	100-500	1500
volcanic ash		25	25-300	33
organic (bioaerosol)	particulates	-	-	50
meteorites		10	0-10	-
secondary emissio	ons			
sulfate from SO ₂			105-420	12
sulfate from H ₂ S		244	16-32	90
sulfate from DMS			9	
nitrate from NO		75	74-700	22
ammonium from N	IH ₃	-	269	-
organic condensates		75	15-200	55
total primary emiss	sion	1500	425-2800	2900
total secondary emission		400	480-1600	180
total		1900	900-4400	3080

Global natural emission of particulate ematter (in Tg a^{-1})

source	Peterson and Junge (1971)	Pueschel (1995)	Jonas et al. (1995)	Wolf and Hidy (1997)
	primary emis	ssions		
industry	56.4	56	100	74.5 ^b
fossil fuel combustuion	43.4	43		132.7 ^c
soot	-	24	20	-
traffic	2.2	2	-	-
forest fires ^a	-	3-150	80	105
agricultural burning	-	29-72	-	
others	31.2	18-31	-	32.5 ^d
total primary emission	133	150-370	200	345
	secondary em	issions		
sulfate from SO ₂	220	70-220	140	121
nitrate from NO	40	23-40	36	20
organic condensates	15	15-90	10	4
total secondary emission	275	110-250	186	145
total	408	260-620	390	490

Global man-made emission of particulate matter (in Tg a^{-1})

^b Pueschel named forest fires to natural sources; Jonas et al. to man-made sources.

^c Cement production (52.6), copper (12.3), Zinc (6.0), paper production (3.6) ^d coal (111) and oil (21,7) ^e including 17.3 agricultural dust

Deposition of soil dust above global ocean, after Duce et al. (1991)

sea	mean flux (g m ⁻² a ⁻¹)	deposition (Tg a ⁻¹)	iron deposition (Tg a ⁻¹)
North Pacific	5.3	470	1.6
Sourh Pacific	0.35	39	0.14
Northen Atlantic	4.0	220	0.76
Southern Atlantic	0.47	24	0.08
North Indian Ocean	7.1	100	0.35
total	2.5	900	3.2

Specific emissions (in t km^{-2}) for the former Eastern and Western Germany in 1989, after Friedrich (1999)

	west	east
SO ₂	4.0	48.8
NO	7.1	4.4
dust	1.9	19.0
CO	33.2	33.5
CO ₂	3103.0	2871.0

Fraction of the Total Suspended Particles (TSP) that are accounted for by PM2.5 and PM10

Number and Mass Size Distribution

Aerosol Size Distribution and Morphology

Soot nanoparticles viewed using Field Emission Scanning Electron Microscopy.

John Tyndall (1869):

"On the Blue Color of the Sky, the Polarization of Skylight, and the Polarization of Light by Cloudy Matter General."

•It has hitherto been my aim to render the chemical action of light upon vapour visible. For this purpose, substances have been chosen, one at least of whose products of decomposition under light shall have a boiling point so high that as soon as the substance is formed it shall be precipitated. By graduating the quantity of the vapor, this precipitation may be rendered of any degree of fineness, forming particles distinguishing by the naked eye, or particles which are probably far beyond the reach of our highest microscopic powers.

•I have no reason to doubt that particles may thus be obtained whose diameter constitutes a very small fraction of the length of wave of violet light. In all cases, when the vapours of the liquids employed are sufficiently attenuated, no matter what the liquid may be, the visible action commences with the formation of a blue cloud.

Example: Chemical composition of PM10 (micrograms per m³) at Birkenes in Southern Norway.

(Data from W. Maenhaut, Univ. of Gent, and NILU.)

The unidentified component is poorly quantified, being the difference between the total mass and the identified components below. Black carbon, determined with an optical reflectance or transmittance method, is subject to a calibration error of at least 50%. Direct determination of elementary and organic carbon is higly desirable in order to improve our understanding of aerosol mass and chemical compositoon Ammonium sulphate and ammonium nitrate account for 30-50% of PM10 and an even larger percentage of fine. particles. Sea-salt particles. Silicates and other primary minerals are a minor component of PM10, and even more insignificant in fine particles. This component has declined markedly in Europe, mainly because of better emission controls in the last 10-20 years.

Particulate Matter Standards

NO STANDARD EXISTS FOR NANOPARTICLES

	PM & Health	
EU standards for F 24-hour limit value	Particulate Matter (PM10) 50 μg/m³ PM10 not to be exceeded > 35 times/year.	to be met 1 jan 2005
	50 µg/m³ PM10 not to be exceeded 7 times/year	to be met 1 jan 2010
annual standard	40 µg/m³ PM10	to be met 1 jan 2005
	20 µg/m³ PM10	to be met 1 jan 2010
US-EPA PM standa 24-hour limit value	ards for PM10 and PM2.5 65 µg/m³ PM2.5 3-year average of 98% percentile	
annual standard	50 µg/m³ PM10 (3-yr average)	
	15 µg/m³ PM2.5 (3-yr average)	

AEROSOL & CLIMATE

Level of Scientific Understanding

Mean of all stations (about 300 of UBA and State administrations) Eastern and Western Germany

Mean	1986-1990	1991-1996	<u> 1997-1999</u>	year
East	59	52	32	5
West	50	38	32	

Brāuniger

SPM trend at some East German background stations

Zingst: Baltic Sea coast (sea side resort) Neuglobsow: Mecklenburg farm land background Schmücke: Mountain background (900 m a.s.l. in Thuringia Melpitz: industrial background (25 km NE from Leipzig)

a: German unification (collaps of Eastern Germany)b: full introduction of power plant desulphurization

year

PM10 trend at Melpitz (near Leipzig)

Berlin trend of SPM

Annual mean of TSP / PM_{10} (in µg m⁻³)

Conclusion: Berlin PM10 nowadays is given by the background figure

Chemical composition of PM10 in Berlin/Brandenburg

(daily PM High-Vol (digitel) sampling September 2001 – September 2002)

Group contribution to PM10 (Berlin/Brandenburg)

(daily PM High-Vol (digitel) sampling September 2001 – September 2002)

■ background 324 m ■ background surface ■ inner city road

excess road (traffic) contribution: 6.0 μg m⁻³ remainder (probably SiO₂ resuspension) 3.0 μg m⁻³ EC (probably direct emission) 2.5 μg m⁻³ OC (probably SOA from VOC emission)

(Note: This excess PM is observed only at very busy streets. Difference between city background and rural background is not significant)

Background level before 1990:40Background level around 1995:20(reduction due to less coal combustion and desulphurization)

Mean PM10 ($\mu g m^{-3}$):	Frohnauer Tower (324 m)	15.5
	rural background	20.3
	city background	23.0
	inner city road	32.9

Background 20 µg m⁻³:

Road traffic + (10-15) μ g m⁻³:

- 7-8 remainder (SiO₂?) 1 seasalt
- 2.5 OC
- 1 EC
- 2 nitrate
- 4 sulfate
- 1 ammonium

6-11 resuspension (SiO₂?) 1 OC 3 EC

Exceedance:

+ 10-15 dry periode + 5-10 eastern air masses

meteorological variations cause higher PM levels
local abatement limited (< 4 mg m⁻³ for OC + EC only)