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A two-part article is presented describing a highly stable computer-controlled K-Band frequency 
synthesizer using a tunable optoelectronics oscillator (OEO). The first part describes LabVIEW 
control of a rack-mountable frequency synthesizer covering 16 to 24 GHz. A narrowband 
computer-controlled filter is realized using a broadband YIG filter combined with a narrowband, 
optically-tuned transversal filter. A forced self-injection locked phase-locked loop (SILPLL) 
technique is employed to suppress side-modes generated in OEOs because of long fiber 
delay lines, which reduces the oscillator phase noise to an estimated 12 fs timing jitter. 
Computer control of this SILPLL OEO is demonstrated with linear chirp (FMCW) and pseudo-
random frequency hopping. Future generations of the forced SILPLL OEO will use integrated 
optoelectronics. In Part 2 of the article, compact OEO solutions based on designs compatible 
with Si photonics are described.

High frequency oscillators are im-
portant for high speed data trans-
mission. Forced oscillation is a 
technique where the oscillation 

frequency can be stabilized using the con-
cept of injection locking (IL)1-2 and phase-
locked loops (PLL).3-5 Distribution of a highly 
stable, low phase noise external frequency 

reference is employed to force the oscilla-
tor to lock to the clean phase noise charac-
teristics of the reference. The indirect opti-
cal injection locking6-7 has been applied 
to distributed microwave8 and mmWave 
oscillators9-14 for optical control of large 
phased-array antennas for radar and com-
munications.15-18 The analytical modeling of 
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IL or PLL, and reduced prime power 
and space compared to a multiplier 
chain. These benefits can also be 
achieved in oscillators without an 
external frequency reference, using 
the concepts of self-IL (SIL)46-49 or 
self-PLL (SPLL).50-52 They improve 
phase noise both close-in and far 
from the carrier, while oscillation 
side-modes are suppressed using 
multiple loops with harmonic de-
lays. SIL and SPLL can be combined 
as SILPLL,53 demonstrating im-
provement in close-in phase noise 
of dielectric resonator oscillators54 

and significant side-mode suppres-
sion, yielding low timing jitter.55

This article focuses on the de-
velopment of a self-forced OEO 
and is presented in two parts. Part 
1 discusses the design and test-
ing of a 19 in. rack-mountable, 
computer-controlled K-Band syn-
thesizer with high frequency resolu-
tion. The SILPLL OEO design uses 
a Mach-Zehnder modulator (MZM) 
and YIG filter combined with an 
optical transversal filter to achieve 
extremely narrowband frequency 
operation. The synthesizer employs 
a dual-drive modulator (DD-MZM)56 

with a bias voltage dependence of 
either the quadrature point (Vπ/2) or 
pinch-off voltage (Vπ). The operat-
ing point close to Vπ/2 has higher 
gain, while operation at Vπ results 
in lower gain with second-order har-
monic generation. Low phase noise 
is achieved over 16 to 24 GHz, with 
a frequency resolution of 20 kHz/

hollow-core photonic crystal fibers 
(HC-PhC),34 improving both short-
term and long-term frequency sta-
bility.35 The broadband behavior 
of fiber-optic delay lines provides 
frequency tuning of the OEO with 
a large number of potential oscilla-
tion frequencies. Narrowband filters 
are the core part of an OEO, deter-
mining the oscillation frequency by 
employing extremely narrowband 
fixed frequency filters.33 To achieve 
broadband frequency tuning, YIG 
filter structures36 are integrated in 
the optical delay line,37 as report-
ed with FET-based tunable oscilla-
tors.38 Even though the OEO can 
have a higher quality factor with lon-
ger fiber delay lines, multiple side-
modes exist around the oscillation 
frequency; 5 km of fiber will have 
side-mode oscillations every 40 kHz. 
Removing them is not feasible, even 
using narrowband electronic filters. 
Coarse tuning of a wideband YIG 
filter36 combined with fine tuning 
a narrowband wavelength-tuned 
optical transversal filter39-43 using 
short delay lines or a chirped fiber 
Bragg grating44 provides high reso-
lution frequency selectivity. None-
theless, a number of side-modes 
persist, although forced oscillation 
techniques can reduce the oscilla-
tion side-modes.44

The benefits of ILPLL25 in elec-
tronic systems45 are from improve-
ments in close-in phase noise, pull-
in time and the locking and tracking 
ranges, compared to the standard 

injection locked oscillators has been 
developed based on parametric os-
cillation19-24 to achieve low phase 
noise from various frequency refer-
ences. The combination of both in-
jection locking with a phase-locked 
loop is proposed as an injection 
locked, phase-locked loop (ILPLL) 
forced stabilization process, and its 
superior performance is experimen-
tally demonstrated. A number of 
oscillator topologies25-28 are used 
for efficient front-end operation of 
a low phase noise, high frequency 
stability28 low free-running phase 
noise oscillator, combined with 
mixing conversion gain with high 
dynamic range. Prime power and 
space saving are also achieved.26-27 
It is feasible to combine mixing with 
oscillation and phase shifting17 as a 
very elegant solution for electroni-
cally scanned phased-array anten-
nas for communication and remote 
sensing.

The category of oscillators based 
on long optical delay lines to pro-
vide high frequency stability29 is 
known as OEO.30 This structure has 
been widely employed for imple-
menting high frequency RF oscil-
lators because of its high spectral 
purity,31 and it has been extended 
to operate to 50 GHz.32 One of the 
challenges encountered with the 
OEO is the temperature sensitivity 
of the long fiber-optic delay lines.33 

Performance can be improved 
by employing passive tempera-
ture compensation using special 

 Fig. 1  Detailed block diagram of the OEO system.
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pared with the dual delay lines of 
the PLL, and the phase error signal 
is fed back to the bias port of the 
MZM. The self-injection locking sig-
nal takes advantage of the PLL path 
and shares the same fiber used in 
the SPLL path. The 3 km SIL signal 
is split from one PLL signal and di-
rectly injected into the output of the 
metallic cavity. The injected power 
level is given by ρ = √(Pi/PO ), where 
Pi is the injected signal power and 
PO the OEO power level. A higher 
value of ρ results in better suppres-
sion of the phase noise far away 
from the carrier.

After successfully demonstrat-
ing the synthesizer on a lab table, it 
was integrated into a 19 in. rack for 
practical use. The assembly detail is 
shown in the following views, where 
the step-by-step assembly of the 
system reflects the block diagram 
shown in Figure 1. The first floor 
of the synthesizer box (see Figure 
3) comprises three fiber mandrels 
and the DC power supply. The top-
side of the cover over the mandrels 

where τd is the fiber 
delay at the fiber 
laser wavelength. 
The delay is related 
to the difference in 
length, ΔL, be-
tween the refer-
ence and delayed 
paths. n(λ0) is the 
index of refraction at the wave-
length λ0.

( )τ = Δ λLn o / c (2)d

τD is a term reflecting fiber dis-
persion, expressed as

( )τ = Δ ΔλD L (3)D

In Equation 3, D is the dispersion 
parameter in units of ps/nm/km, 
while Δλ is the difference between 
the optical source wavelength and 
original wavelength. The null-to-
null bandwidth is around 4.5 MHz 
at 1550 nm. The tuning sensitivity 
achieved using the picometer reso-
lution of the fiber laser is 20 kHz/
pm. Using computer control, after 
setting the desired frequency, the 
frequency setting process termi-
nates when the difference between 
the desired frequency and the de-
tected frequency is smaller than half 
the fine tuning resolution, approxi-
mately 10 kHz; the final output is 
then shown on the LabVIEW display.

In addition to the optical fre-
quency selectivity, SIL,49 SPLL52 and 
the combination SILPLL53-54 is used 
to reduce the synthesizer’s phase 
noise, both close-in and far from the 
carrier frequency. The block diagram 
outside the dotted area of Figure 1 
depicts the single delay loop SIL49 

and dual optical delayed DSPLL.52 

There are two paths for the modu-
lated signal after the MZM: one is 
used as the main loop of the OEO, 
with the other loop further split into 
two paths of 3 and 8 km, which are 
used as dual phase-locking signals. 
The combined phase-locking signal 
drives a PCB board containing the 
“Mixer LPFA” block shown in Fig-
ure 1. A double balanced mixer is 
integrated on the same board with 
a lowpass filter amplifier, realized 
with op-amp circuits, which serves 
as the phase detector and lowpass 
filter portion of the PLL. The phase 
error of the OEO main loop is com-

pm of optical wavelength control 
at 1550 nm. Computer control gen-
erates both FMCW and frequency 
hopped operation of the synthesiz-
er, enabling it to be used for remote 
sensing and secure communications 
applications. In Part 2 of the article, 
additional design innovations are 
described which lead to a compact 
OEO.57-60

SYNTHESIZER DESIGN
The block diagram of the OEO 

synthesizer is shown in Figure 1. A 
fiber laser with low relative intensity 
noise, the TWL-C-HP-M, is used to 
provide a tunable wavelength laser 
signal. The laser signal transmits 
through optical fiber delay lines and 
is received by high speed photode-
tectors (Discovery Semiconductors 
DSC50S) to generate an electrical 
signal which passes through a nar-
rowband filter. This narrowband fil-
ter is the core of the OEO, used to 
select the oscillation frequency. A 
high Q metallic filter is the classic 
approach to realize a fixed frequen-
cy OEO, where mechanical adjust-
ment of the cavity length tunes the 
frequency. As this approach is not 
suitable for computer control, a YIG 
filter36 is used for this synthesizer 
design. The YIG filter is attractive 
because it has a broad tuning range 
and can be computer-controlled. To 
compensate for the poorer frequen-
cy selectivity of wide-tuning YIG fil-
ters, a narrowband optical transver-
sal filter42 is added, realized with a 
30 m fiber. The YIG filter provides 
coarse tuning of the synthesizer, i.e., 
50 MHz/mA. The highest resolu-
tion for the power supply (Keysight 
E3631A) in constant current mode 
is 1 mA, so smaller frequency steps 
will be provided by the transversal 
filter.

An optical transversal filter42 

can provide narrowband filtering 
of microwave signals; a first-order 
transversal filter is shown in Figure 
2. An optical signal is divided into 
two paths, with one path the refer-
ence, the other creating the delay. 
This is represented by the following 
filter transfer function, in terms of RF 
frequency

( )
( )ω =

+ ω τ + τ⎡⎣ ⎤⎦H
1 cos

2
(1)

d D
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 Fig. 2  First-order optical transversal filter using a 3 dB 
splitter and combiner with an optical delay in one path.
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value into the graphical interface shown in the figure. 
Using a look-up table, the program iteratively changes 
the current bias of the YIG filter and wavelength of the 
fiber laser, corresponding to coarse and fine tuning, re-
spectively. The desired frequency is achieved in under 
15 seconds. The time for frequency acquisition reflects 
the iterative process to attain the proper YIG filter bias 
current and fiber laser wavelength, given the extremely 
narrowband bandpass characteristics of the cascaded 
YIG and optical transversal filters. This settling time can 
be reduced using a custom power supply and control-
lers.

The measured phase noise of the OEO system is 
shown in Figure 9. The synthesizer outputs are mea-
sured at steps of 2 GHz from 16 to 24 GHz, demon-
strating operation across all of K-Band. The measured 
phase noise is −105 dBc/Hz at 1 kHz offset from the 
carrier and −130 dBc/Hz at 10 kHz offset. The long-term 
stability of the 19 in. unit was evaluated, recording a 4.5 

and power sup-
ply contains the 
laser driver, laser 
and YIG filter (see 
Figure 4), com-
mercial products 
from Optilab and 
Teledyne. A third-
level assembly 
integrates the re-
maining RF and 

fiber-optic components, mounted on a sheet metal 
cover and connected using coaxial cables or optical fi-
bers (see Figure 5); this sheet is placed on top of the 
second level. Figure 6 shows a front view of the three 
levels, with all the circuits packaged within the overall 
height of the enclosed box, covered with metal on the 
front, top and back sides, with venting to help dissipate 
the heat of the power supply. A commercial Er doped 
fiber amplifier (EDFA) is mounted on top of the OEO 
box and shares the screws with the OEO box for stabi-
lization and to maintain good connection between the 
EDFA and OEO unit (see Figure 7).

The synthesizer has DB9 and RS232 interface ports 
for computer control of the laser source and DC power 
supply. The program for computer control, developed 
using LabVIEW 2018, controls the output wavelength of 
the fiber laser and the current bias of the YIG filter to re-
alize the narrowband frequency selection (see Figure 8). 
To set the operating frequency, users type the desired 

 Fig. 6  Front view of the OEO synthesizer, showing the 
power supply (left), 1 and 5 km fiber mandrels, laser driver and 
other components.

 Fig. 7  Complete SILPLL OEO system.

 Fig. 5  View of the RF and fiber-optic components on the 
third level of the synthesizer housing.

 Fig. 9  Measured phase noise of the K-Band OEO system 
with 16 to 24 GHz carriers.
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 Fig. 10  Linear frequency sweep using the LabView control 
program.
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device, Sagnac loop PM-IM conver-
tor64-65 and a multi-mode, multi-
section semiconductor laser58 will 
be presented in Part 2 of this ar-
ticle.66 n
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