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A typical linear oscillator phase noise model (block diagram)
Leeson Model
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A typical block diagram of feedback oscillator circuit 
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Colpitts oscillator with base-lead inductances and package capacitance.  CC is neglected.
The expression of input impedance is given as 
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This Figure shows the R&S vector analyzer and the test fixture                         

Typical measurement setup for evaluation of  large signal parameters (R&S vector analyzer and 
the test fixture for the transistor of choice )

Agilent now calls this X Parameters



6

®

MICROWAVE CORPORATION

The bias, drive level, and frequency dependent S parameters are then obtained for practical use.

Measured large-signal S11 of the BFP520 
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Measured large-signal S12 of the BFP520 
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Measured large-signal S21 of the BFP520 
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Measured large-signal S22 of the BFP520 
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Typical transient simulation of a ceramic resonator-based high-Q oscillator (node of the voltage
for display is taken from the emitter)
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This Figure  illustrates the start and steady-state oscillation conditions.

A typical start and steady-state oscillation conditions.
Ra(A, f) is the starting negative Resistance, which gets lower as the amplitude increases.
Therefore, feedback must be sufficient to maintain enough negative resistance to sustain oscillating.

Negative Resistance
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Plot shows the collector current as a function of time with respect to normalized base drive Voltage x.



14

®

MICROWAVE CORPORATION

A typical phase noise plot of LC-based 1GHz oscillator as a function of x
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A typical block diagram where oscillator acts like a mixer.
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This equation is the linear Leeson equation, with the pushing effect omitted and the flicker term added by
Dieter Scherer (Hewlett Packard, about 1975); the final version with the pushing (supply voltage dependency
VCO effect added by Rohde 2004), is
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The resulting phase noise in linear terms can be calculated as

This pushing also applies to the VCO case.
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A typical phase noise plot for an ideal 1 GHz oscillator phase noise of about – 140 dBc/Hz at offset of 10 kHz offset, assuming unloaded Q
of 1 million loaded Q of 500, noise factor 6 dB, flicker frequency 1kHz, oscillator voltage gain 1Hz/V, equivalent noise resistance of tuning
diode 1Ohm and average power at oscillator output 10 dBm. No diode contribution
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First ever complete and correct  large signal phase noise calculation (Rohde 2004)
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A typical 1 GHz oscillator circuit
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A CAD Simulated (Ansoft Designer) phase noise plot for 1 GHz oscillator circuit 

A CAD Simulated (MATLAB) phase noise plot for 1 GHz oscillator circuit 
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The quality factor of the coupled resonator network previously shown is given by
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Measured phase noise plots for the single resonator (1-resonator) and the identical coupled resonator (2-
resonator

CAD simulated phase noise plot for the single resonator (1-resonator) and the identical coupled resonator (2-resonators)
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Layout of the MCLR VCO (500MHz-2500MHz) (Patented)
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Layout of  1GHz Colpitts oscillator (Ceramic resonator oscillator)
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Simulated phase noise plot of for CRO 
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Measured phase noise plot of the CRO 
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Layout of dual-band RCO (Patent pending)



Phase noise plot of the dual-band VCO



Thank You

Are there any questions?
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